(1+cot square theta)tan theta ÷ sec square theta = cot theta
Answers
• Proof :
L.H.S. =
since
= R.H.S.
Hence, proved.
• Trigonometry : It is the study of angles and its sine, cosine, tangent, cosectant, sectant, cotangent ratios.
• Identity Rules :
>> sinθ * cosecθ = 1
>> cosθ * secθ = 1
>> tanθ * cotθ = 1
>> sin²θ + cos²θ = 1
>> sec²θ - tan²θ = 1
>> cosec²θ - cot²θ = 1
Solution:-
Given:-
[(1 + cot²A)/tanA] / (Sec²A)
To Proof :-
[(1 + cot²A)/tanA] / (Sec²A) = cotA
Proof:-
[(1 + cot²A)/tanA] / (Sec²A)
we know that,
( 1+ cot²A) = cosec²A
=) [ cosec²A/ tanA] / sec²A
Converting cosecA , tanA and secA in terms of sinA and cosA.
=) [ (1/sinA)/(sinA/cosA)] / (1/cos²A)
=) [ sinA × cos²A] / [ sin²A × cosA]
=) cosA/sinA
=) cotA
Hence Proved!
Identity Used:-
( 1+ cot²A) = cosec²A
Note:-
cotA = ( cosA/sinA)
tanA = ( sinA/ cosA)
secA = ( 1/ cosA)
cosecA = ( 1/sinA)