(1+cot0+tan0)(sin0-cos0)/sec³-cosec³0=sin²0cos²0
Answers
Answer:
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) =
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2 =SIN^3-COS^3/SINCOS .
L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2 =SIN^3-COS^3/SINCOS . LHS=THE HENCE PROVED
Answer:
I hope this answer will help you