Math, asked by kavitanautiyal5747, 9 months ago

(1+cot0+tan0)(sin0-cos0)/sec³-cosec³0=sin²0cos²0​

Answers

Answered by TheRiskyGuy
1

Answer:

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) =

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2 =SIN^3-COS^3/SINCOS .

L.H.S = (1+TAN0+COT0)(SIN0-COS0) =(1+SIN/COS+COS/SIN)(SIN-COS) =(COSSIN+SIN^2+COS^2/COSSIN)(SIN-COS) = COSSIN^2-COS^2SIN+SIN^3-SIN^2COS+COS^2SIN-COS^3/COSSIN =SIN^3 -COS^3/COSSIN =R.H.S =SEC/COSEC^2-COSEC/SEC^2 =1/COS/1/SIN^2 -1/SIN/1/COS^2 =SIN^3-COS^3/SINCOS . LHS=THE HENCE PROVED

Answered by vinay4020
0

Answer:

I hope this answer will help you

Attachments:
Similar questions