Math, asked by greatfanofdhoni, 10 months ago

1+(cot2A-tan2A)cos2A=cot2A

please solve it

only if u know the answer​

Answers

Answered by amitnrw
6

Given :    1  + ( Cot²A  - Tan²A)Cos²A  = Cot²A

To find : Prove that 1  + ( Cot²A  - Tan²A)Cos²A  = Cot²A

Solution:

1  + ( Cot²A  - Tan²A)Cos²A  = Cot²A

LHS =

1  + ( Cot²A  - Tan²A)Cos²A

using Cot = Cos/Sin  & Tan = Sin/Cos

= 1  + ( Cos²A/Sin²A  -Sin²A/Cos²A )Cos²A

= 1  + (( Cos⁴A - Sin⁴A) /Sin²ACos²A)Cos²A

=  1  +  ( Cos⁴A - Sin⁴A) /Sin²A

using a² - b² = ( a + b)(a - b)

here a = Cos²A  & b = Sin²A

= 1  + (Cos²A + Sin²A)(Cos²A - Sin²A)/Sin²A

using Cos²A + Sin²A = 1

= 1  +  (Cos²A - Sin²A)/Sin²A

= (Sin²A + Cos²A - Sin²A)/Sin²A

= Cos²A/Sin²A

= Cot²A  

= RHS

QED

Hence Proved

1  + ( Cot²A  - Tan²A)Cos²A  = Cot²A

Learn more:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Prove the following ( sin x - cos x +1)/ (sin x + cos x -1) = 1 / (sec x

https://brainly.in/question/12563868

Answered by Anonymous
1

Answer:

hii ham thor follow my this id and please inbox me please ...............

Similar questions