1+(cot2A-tan2A)cos2A=cot2A
please solve it
only if u know the answer
Answers
Given : 1 + ( Cot²A - Tan²A)Cos²A = Cot²A
To find : Prove that 1 + ( Cot²A - Tan²A)Cos²A = Cot²A
Solution:
1 + ( Cot²A - Tan²A)Cos²A = Cot²A
LHS =
1 + ( Cot²A - Tan²A)Cos²A
using Cot = Cos/Sin & Tan = Sin/Cos
= 1 + ( Cos²A/Sin²A -Sin²A/Cos²A )Cos²A
= 1 + (( Cos⁴A - Sin⁴A) /Sin²ACos²A)Cos²A
= 1 + ( Cos⁴A - Sin⁴A) /Sin²A
using a² - b² = ( a + b)(a - b)
here a = Cos²A & b = Sin²A
= 1 + (Cos²A + Sin²A)(Cos²A - Sin²A)/Sin²A
using Cos²A + Sin²A = 1
= 1 + (Cos²A - Sin²A)/Sin²A
= (Sin²A + Cos²A - Sin²A)/Sin²A
= Cos²A/Sin²A
= Cot²A
= RHS
QED
Hence Proved
1 + ( Cot²A - Tan²A)Cos²A = Cot²A
Learn more:
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635
Prove the following ( sin x - cos x +1)/ (sin x + cos x -1) = 1 / (sec x
https://brainly.in/question/12563868
Answer:
hii ham thor follow my this id and please inbox me please ...............