prove that tanB+c/2=cotA/2
Answers
Answered by
1
Explanation:
Answer:
tan\big(\frac{\angle A+ \angle C}{2}\big)=cot(\frac{B}{2})
Step-by-step explanation:
We \: know \: that,\\</p><p>In \: Triangle \: ABC ,</p><p>\\\angle A + \angle B + \angle C=180\degree
( Angle sum property )
\implies \angle A+\angle C = 180\degree - \angle B
Divide both sides by 2 , we get
\implies \frac{\angle A+ \angle C}{2}=\frac{180}{2}-\frac{B}{2}
\implies \frac{\angle A+ \angle C}{2}=90\degree -\frac{B}{2}
\implies tan\big(\frac{\angle A+ \angle C}{2}\big)=tan\big(90\degree -\frac{B}{2}\big)
\implies tan\big(\frac{\angle A+ \angle C}{2}\big)= cot(\frac{B}{2})
/* Since ,
tan(90° - A) =cotA */
Similar questions