(1+cota+seca)(1+cota-seca)=2cota
Answers
Step-by-step explanation:
Taking RHS
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)(1+ cosA)
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)(1+ cosA)Cos A = 1/sec A
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)(1+ cosA)Cos A = 1/sec A1 + 1/secA
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)(1+ cosA)Cos A = 1/sec A1 + 1/secAsecA + 1/secA = RHS
Taking RHS(1 cotA)/secA = sin^2A/(1-cosA)Sin A ^ 2 = 1 – cos A ^2Hence, 1 – cos A ^2//(1-cosA)A^2 – B^2 = (A – B) (A + B)(1 - cosA) (1 + cosA) /(1-cosA)(1+ cosA)Cos A = 1/sec A1 + 1/secAsecA + 1/secA = RHSthe LHS part of the question doesn’t make sense.
Answer:
mind your language he is my friend.....