Math, asked by dtanuja122, 10 months ago

1/cotA+tanA= find the value

Answers

Answered by CharmingPrince
0

Answer:

\dfrac{1}{cotA + tanA}

\implies \dfrac{1}{\dfrac{1}{tanA} + tanA}

\implies \dfrac{1}{\dfrac{1+ tan^2A}{tanA}}

\implies \dfrac{tanA}{1+tan^2A}

\implies \dfrac{tanA}{sec^2A}

\implies \dfrac{sinA}{cosA} \times cos^2A

\implies {sinAcosA}

\implies \dfrac{sin2A}{2}

Identities used :

1️⃣ cotA = \dfrac{1}{tanA}

2️⃣ 1 + tan^A = sec^A

3️⃣ tanA = \dfrac{sinA}{cosA}

4️⃣ secA = \dfrac{1}{cosA}

5️⃣ 2sinAcosA = sin2A

Additional information :

\begin{lgathered}</p><p>\boxed{\begin{array}{l}</p><p>\sf Fundamental \ trigonometric\ identities:\\ \\</p><p>\rm sin^2\theta + cos^2\theta = 1\\</p><p>\rm 1 + tan^2 \theta = sec^2 \theta\\</p><p>\rm 1 + cot^2\theta = cosec^2\theta \\</p><p>\end{array}}\end{lgathered}

Similar questions