Chemistry, asked by WatsalKumar6302, 1 year ago

1+cota+tana)(sina-cosa)=sec^3a-cosec^3a/sec^2a-cosec^2a

Answers

Answered by RvChaudharY50
37

\color {red}\huge\bold\star\underline\mathcal{Question:-} (1+cota+tana)(sina-cosa) = (sec^3a-cosec^3a)/(sec^2a*cosec^2a)

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

Solving LHS ,

(1+cota+tana)(sina-cosa) \\  \\ (1 +  \frac{cosa}{sina}  +  \frac{sina}{cosa}) \: (sina-cosa) \\  \\ (sina + cosa +  \frac{sin ^{2}a }{cosa} ) - (cosa +  \frac{cos^{2}a }{sina}  + sina) \\  \\ \frac{sin ^{2}a }{cosa} \:  - \frac{cos^{2}a }{sina} \:  \\  \\  \frac{sin^{2}a }{1}  \times  \frac{1}{cosa}  - \frac{cos^{2}a }{1}  \times  \frac{1}{sina} \\  \\  \frac{seca}{cosec^{2}a }  - \:  \frac{coseca}{sec^{2}a }  \\  \\  \frac{(sec^{3}a - cosec^{3}a)}{cosec^{2}a \times sec^{2} a }  \\  \\

\large\red{\boxed{\sf </strong><strong>LHS</strong><strong>=</strong><strong>RHS</strong><strong>}}

\huge\blue{</strong><strong>PROVED</strong><strong>}

Similar questions
Math, 1 year ago