Math, asked by khusailmarasha, 1 year ago

(1 + cotA + tanA) (sinA - cosA) = (secA / cosec 2 A) - (cosecA / sec 2 A)

Answers

Answered by Saiyma
51

Hope it helps my frnds...

Attachments:
Answered by mysticd
34

Answer:

(1+cotA+tanA)(sinA-cosA)=\frac{secA}{cosec^{2}A}-\frac{cosecA}{sec^{2}A}

Step-by-step explanation:

LHS=(1+cotA+tanA)(sinA-cosA)

=(1+\frac{cosA}{sinA}+\frac{sinA}{cosA})(sinA-cosA)

=(1+\frac{cosA}{sinA}+\frac{sinA}{cosA})sinA+</p><p>(1+\frac{cosA}{sinA}+\frac{sinA}{cosA})(-cosA)

sinA+cosA+\frac{sin^{2}A}{cosA}-cosA-\frac{cos^{2}A}{sinA}-sinA

=\frac{sin^{2}A}{cosA}-\frac{cos^{2}A}{sinA}

=\frac{sin^{2}A}{1}\times \frac{1}{cosA}-\frac{cos^{2}A}{1}\times \frac{1}{sin A}

=\frac{secA}{cosec^{2}A}-\frac{cosecA}{sec^{2}A}

=RHS

Therefore,

(1+cotA+tanA)(sinA-cosA)=\frac{secA}{cosec^{2}A}-\frac{cosecA}{sec^{2}A}

•••♪

Similar questions