{1+cotx-sec(90+x)}{1+cotx+sec(90+x)}=2cotx prove it
Answers
Answered by
1
Step-by-step explanation:
we have to prove, [1+cotx-sec(90+x)][1+cotx+sec(90+x)] =
2cotx
LHS, [(1+cotx)-sec(90+x)][(1+cotx)+sec(90+
x)]
applying identity, (a-b)(a+b) = a²-b²
[(1+cotx)²-sec²(90+x)]
as, sec(90+x) = -cosecx
so, [1+cot²x+2cotx-(-cosecx)²]
[1+cot²x+2cotx-cosec²x]
[cot²x+2cotx-(cosec²x-1)]
as, cosec²x-1 = cot²x {it's identity}
so, [cot²x+2cotx-cot²x]
=> 2cotx = RHS
hence proved....
Similar questions