1/(e^x-e^-x) integral
Answers
Answered by
2
dxex+e−x∫dxex+e−x
Multiplying numerator and denominator by exex
∫exe2x+1dx∫exe2x+1dx
Put ex=tex=t therefore dt=exdxdt=exdx
∫dt1+t2∫dt1+t2
=arctant+C=arctant+C
Putting in original value, final answer is
=arctan(ex)+C=arctan(ex)+C
Well, another way to do this is using some Complex analysis.
Using Euler’s Identity
eix=cosx+isinxeix=cosx+isinx
ex=cosxi+isinxiex=cosxi+isinxi
ex=cos(ix)−isin(ix)ex=cos(ix)−isin(ix)
SimilarlySimilarly
e−x=cos(ix)+isin(ix)e−x=cos(ix)+isin(ix)
Our integral then transform into
∫dxcosix−isinix+cosix+isinix∫dxcosix−isinix+cosix+isinix
=12∫sec(ix)dx=12∫sec(ix)dx
Using Substitution of ix=t⟹dx=(1/i)dtix=t⟹dx=(1/i)dt
We get the result
12iln(sec(ix)+tan(ix))+C12iln(sec(ix)+tan(ix))+C
Which can be written in Hyperbolic Trigonometric Functions as
12iln(sechx+tan(ix))+C12iln(sechx+tan(ix))+C
Note: The function in the question itself can be written as Hyperbolic Trigonometric Function
sechx2sechx2
Similar questions