Math, asked by hk7879204, 6 months ago

1. Eliminate 't' by substitution method
v)vf = vi + at ; s = vit +1/2 at²​

Answers

Answered by iahmad2652
2

Step-by-step explanation:

Eliminate 't' by substitution method

v)vf = vi + at ; s = vit +1/2 at²

Answered by supreethacmsl
5

Answer:  s=\frac{v_{f} ^{2} - v_{i} ^{2}}{2a}

Step-by-step explanation:

Given: v_{f} = v_{i} + at  ----- (1)

          s = v_{i}\,t + \frac{1}{2}a t^{2}  -------(2)

We are expected to eliminate the 't' by substitution method,

Consider the equation (1)

          v_{f} = v_{i} + at

Let us simplify the above equation for 't',

          at = v_{f} - v_{i}

          t = \frac{v_{f} - v_{i}}{a}      -------(3)

Substitute (3) in (2) we get,

         s = v_{i}  (\frac{v_{f} - v_{i}}{a})+ \frac{1}{2} a (\frac{v_{f} - v_{i}}{a})^{2}

         s = v_{i} (\frac{v_{f} - v_{i}}{a}) + \frac{1}{2} \frac{(v_{f}-v_{i})}a^{2}

(We know that, (a-b)^{2}=a^{2}+b^{2}-2ab )

         s =  (\frac{v_{i}v_{f} - v_{i}v_{i}}{a}) + \frac{1}{2} \frac{(v_{f}^{2} +v_{i}^{2}-2v_{f}v_{i} )}a

On taking lcm we get,

         s =  \frac{2(v_{i}v_{f} - v_{i}^{2})+(v_{f}^{2} +v_{i}^{2}-2v_{f}v_{i} )}{2a}

         s =  \frac{2v_{i}v_{f} - 2v_{i}^{2}+v_{f}^{2} +v_{i}^{2}-2v_{f}v_{i} }{2a}

         s =  \frac{- 2v_{i}^{2}+v_{f}^{2} +v_{i}^{2} }{2a}

         s =  \frac{- v_{i}^{2}+v_{f}^{2}  }{2a}

(or)    s =  \frac{ v_{f}^{2}-v_{i}^{2} }{2a} is the required solution where 't' is eliminated.

         

 (#SPJ2)

         

         

         

         

           

Similar questions