1. Evaluate and choose option. sin 600°cos 30° + sin 30° cos 600°
(a) 1 , (b) -1 , (c) 1/2, (d) non of these
Answers
Answered by
31
AnswEr :
sin600°cos30° + sin30°cos600° = 0
Given :
sin600°cos30° + sin30°cos600°
Explanation :
Given expression is of the form sin(A+ B)
sin(A + B) = sinAcosB + cosAsinB
Thus,
sin600°cos30° + sin30°cos600°
= sin(600 + 30)
= sin(630)
= sin[2 × 360 - 90]
(360 - ∅) lies in fourth quadrant where sine function is negative
= - sin(90)
= - 1
Option (B) is correct
Answered by
20
Step-by-step explanation:
- 1. Evaluate and choose option. sin 600°cos 30° + sin 30° cos 600°(a) 1 , (b) -1 , (c) 1/2, (d) non of these
______________________________
- Evaluate and choose option.
______________________________
sin600°cos30° + sin30°cos600°
We Get similarly:-
= sin(600 + 30)
= sin(630)
We know :-
Sin∅ = Sin90°
Sin∅ = 1
Then putting the value
Option (B) is correct
Similar questions