Math, asked by rajivrtp, 11 months ago

1. Evaluate and choose option. sin 600°cos 30° + sin 30° cos 600​°
(a) 1 , (b) -1 , (c) 1/2, (d) non of these

Answers

Answered by Anonymous
31

AnswEr :

sin600°cos30° + sin30°cos600° = 0

Given :

sin600°cos30° + sin30°cos600°

Explanation :

Given expression is of the form sin(A+ B)

sin(A + B) = sinAcosB + cosAsinB

Thus,

sin600°cos30° + sin30°cos600°

= sin(600 + 30)

= sin(630)

= sin[2 × 360 - 90]

(360 - ∅) lies in fourth quadrant where sine function is negative

= - sin(90)

= - 1

Option (B) is correct

Answered by Anonymous
20

Step-by-step explanation:

 \bf \huge\: Question\:\:

  • 1. Evaluate and choose option. sin 600°cos 30° + sin 30° cos 600°(a) 1 , (b) -1 , (c) 1/2, (d) non of these

______________________________

 \bf \huge\: To\:Find \:

  • Evaluate and choose option.

______________________________

 \bf \huge\: </strong><strong>Given</strong><strong>\:</strong><strong> \:

sin600°cos30° + sin30°cos600°

We Get similarly:-

= sin(600 + 30)

 \bf\: On\: Adding

= sin(630)

 \bf\: We \: know\: (360 - ∅)

 \bf\:= sin[2 × 360 - 90]

 \bf\:=  - sin(90)

We know :-

Sin = Sin90°

Sin = 1

Then putting the value

 \bf\red{= - 1}

Option (B) is correct

Similar questions