Math, asked by pratibharanjan783, 7 months ago

1. Evaluate :
sin 18°/cos 72°​

Answers

Answered by a321038
6

Answer:

 \frac{ \sin(18) }{ \cos(90 - 18) }  \\ as \:  \cos(90 -  \alpha )  =  \sin( \alpha )  \\  \frac{ \sin(18) }{ \sin(18) }  = 1

Answered by Anonymous
611

Step-by-step explanation:

 \text{ \large  \underline{   \orange{Question:-}}}

  • 1. Evaluate :sin 18°/cos 72°

 \text{ \large  \underline{   \green{Given:-}}}

  • sin 18°/cos 72°

 \text{ \large  \underline{   \pink{To Find:-}}}

  • Find the simplify the number .

 \text{ \large  \underline{   \red{Solution:-}}}

     \sf \to     \frac{sin 18°}{cos72°} \:  \\ \\ \sf \to     \frac{sin(90° - 18°)}{cos72°} \\\\ \:  \sf \to    sin(90 - a) = cos(a) \\\\  \sf \to     \frac{cos72°}{cos72°} \: \\ \\ \sf \to \blue{ 1 }

 \text{ \large  \underline{   \purple{more information:-}}}

  • 1. sin (-x) = -sin x

  • 2. cos (-x) = cos x

  • 3. tan (-x) = -tan x

  • 4. cosec (-x) = -cosec x

  • 5. sec (-x) = sec x

  • 6. cot (-x) = -cot x
Similar questions