Math, asked by atharvagadge, 3 months ago

(1) Find the area, if the triangle whose vertices are
the points (3, 4), (5, 7) and (-2, -3).

Answers

Answered by iemsmahjabinnisha
0

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Class 11

>>Applied Mathematics

>>Straight lines

>>Introduction

>>Find the area of the triangle whose vert

Question

Bookmark

Find the area of the triangle whose vertices are (3,−4),(7,5),(−1,10)

Medium

Solution

verified

Verified by Toppr

Given: (3,−4),(7,5),(−1,10)

Let us assume A(x

1

,y

1

)=(3,−4)

Let us assume B(x

2

,y

2

)=(7,5)

Let us assume C(x

3

,y

3

)=(−1,10)

Area of triangle

=

2

1

[x

1

(y

2

−y

3

)+x

2

(y

3

−y

1

)+x

3

(y

1

−y

2

)]

Now, Area of triangle

=

2

1

[{3(5−(10))}+(7){(10+4)}−1(−4−5)]

=

2

1

{−15+98+9}

=

2

92

=46 square units

We have,

A(x

1

,y

1

)=(2,3)

B(x

2

,y

2

)=(−2,2)

C(x

3

,y

3

)=(−1,−2)

D(x

4

,y

4

)=(3,−1)

Now,

Using distance formula we get,

AB=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

⇒AB=

(2+2)

2

+(3−2)

2

⇒AB=

17

BC=

(x

2

−x

3

)

2

+(y

2

−y

3

)

2

⇒BC=

(−2+1)

2

+(2+2)

2

⇒BC=

17

CD=

(x

3

−x

4

)

2

+(y

3

−y

4

)

2

⇒CD=

(−1−3)

2

+(−2+1)

2

⇒CD=

17

DA=

(x

4

−x

1

)

2

+(y

4

−y

1

)

2

⇒DA=

(3−2)

2

+(−1−3)

2

⇒DA=

17

Now diagonal AC=

(x

1

−x

3

)

2

+(y

1

−y

3

)

2

⇒AC=

(2+1)

2

+(3+2)

2

⇒AC=

34

And diagonal BD=

(x

2

−x

4

)

2

+(y

2

−y

3

)

4

⇒BD=

(−2−3)

2

+(2+1)

2

⇒BD=

34

So,

Sides AB=BC=CD=DA and diagonals AC=BD

Hence, the vertices are of a square ABCD.

Hence proved.

Similar questions