Math, asked by medisrivardhan, 4 months ago

1. Find the area of the triangle whose vertices are
(1) (2,3) (-1,0), (2, -4)

Answers

Answered by Asterinn
2

Given :

  • vertices of triangle are (2,3) (-1,0), (2, -4)

To find :

  • area of triangle whose vertices are given

Formula used :

Area of triangle whose vertices are (x1,y1) ,

(x2,y2) and (x3,y3) :-

 \dfrac{1}{2} \times  \begin{vmatrix} \rm  x_{1}&\rm y_{1} & {1} \\\rm x_{2} &\rm y_{2} & 1 \\\rm x_{3} &\rm y_{3} &1 \\ \end{vmatrix}

Solution :

Vertices of triangle are = (2,3) (-1,0), (2, -4)

Area :-

 \implies\dfrac{1}{2} \times  \begin{vmatrix} \rm  x_{1}&\rm y_{1} & {1} \\\rm x_{2} &\rm y_{2} & 1 \\\rm x_{3} &\rm y_{3} &1 \\ \end{vmatrix}

 \implies\dfrac{1}{2} \times  \begin{vmatrix} \rm  2&\rm 3 & {1} \\\rm  - 1 &\rm 0 & 1 \\\rm 2&\rm - 4 \: &1 \\ \end{vmatrix}

Expanding from row 1:-

  \sf \implies\dfrac{1}{2} \times[  2(0  + 4) - 3( - 1 - 2) + 1(4 - 0)]

\sf \implies\dfrac{1}{2} \times[  8  + 9 + 4]

\sf \implies\dfrac{1}{2} \times21

\sf \implies\dfrac{21}{2}   \:  \: square \: unit

\sf \implies 10.5  \:  \: square \: unit

Answer :

the area of the triangle whose vertices are (2,3) (-1,0), (2, -4) = 10.5 square unit

Similar questions