Math, asked by naveensrichakra8646, 1 year ago

1.Find the missing frequency f, if the mode of the given data is 154.









Classes



120-130



130-140



140-150



150-160



160-170



170-180



Frequency



2



8



12



f



9



7



plzz give an answer fast....

Answers

Answered by Anonymous
27
The answer is given below:-
Attachments:
Answered by tardymanchester
21

Answer:

The value of f=18.

Step-by-step explanation:

Given : Data,  

Class :         120-130    130-140   140-150   150-160   160-170    170-180

Frequency :    2                8              12              f              9              7

To find : The value of f?

Solution :  

Formula to find the mode is  

M=l+(\frac{f_1-f_0}{2f_1-f_0-f_2})\times h

Where, l is the lower limit of the modal class  

h is the size of the class interval,

f_1 is the frequency of the modal class

f_0 is the frequency of the class preceding the modal class,

f_2 is the frequency of the class succeeding the modal class.

From the given data,

In the class interval 20-30 has highest frequency.

So, The modal class is 20-30

l=150 , h=10 , f_1=f ,f_0=12, f_2=9  , M=154

Substituting the value in the mode formula,

154=150+(\frac{f-12}{2(f)-12-9})\times 10

154-150=(\frac{f-12}{2f-21})\times 10

4=\frac{10f-120}{2f-21}

8f-84=10f-120

2f=36

f=18

Therefore, The value of f=18.

Similar questions