Math, asked by sharmanayan087, 9 months ago

1. Find the quotient and remainder.
a) (x4 + 6x3 +13x2 + 15x - 1) /(x2 + 3x + 2)
Please answer the question​

Answers

Answered by swethaiyer2006
1

Answer:

Step-by-step explanation:

p(x) = x⁴ + 6x³ + 13x² + 15x - 1

g(x) = x² + 3x + 2

By Long Division Method, we obtained :

• Quotient - x² + 3x + 4

• Remainder = 3x - 1

[Refer to the attachment]

★ Dividend = Divisor × Quotient + Remainder

→ x⁴ + 6x³ + 13x² + 15x - 1 = (x² + 3x + 2) (x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x²(x² + 3x + 4) + 3x(x² + 3x + 4) + 2(x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 4x² + 3x³ + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 3x³ + 4x² + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 6x³ + 13x² + 15x - 1

Hence, Verified!p(x) = x⁴ + 6x³ + 13x² + 15x - 1

g(x) = x² + 3x + 2

By Long Division Method, we obtained :

• Quotient - x² + 3x + 4

• Remainder = 3x - 1

[Refer to the attachment]

VERIFICATION

★ Dividend = Divisor × Quotient + Remainder

→ x⁴ + 6x³ + 13x² + 15x - 1 = (x² + 3x + 2) (x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x²(x² + 3x + 4) + 3x(x² + 3x + 4) + 2(x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 4x² + 3x³ + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 3x³ + 4x² + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 6x³ + 13x² + 15x - 1

Hence, Verified!

PLS MARK AS BRAINLIEST!!!!!!!!!!

Attachments:
Answered by jatin84394
0

Answer:

Dividend = Divisor × Quotient + Remainder

→ x⁴ + 6x³ + 13x² + 15x - 1 = (x² + 3x + 2) (x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x²(x² + 3x + 4) + 3x(x² + 3x + 4) + 2(x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 4x² + 3x³ + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 3x³ + 4x² + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 6x³ + 13x² + 15x - 1

Hence, Verified !p(x) = x⁴ + 6x³ + 13x² + 15x - 1

g(x) = x² + 3x + 2

By Long Division Method, we obtained :

• Quotient - x² + 3x + 4

• Remainder = 3x - 1

[Refer to the attachment]

VERIFICATION

★ Dividend = Divisor × Quotient + Remainder

→ x⁴ + 6x³ + 13x² + 15x - 1 = (x² + 3x + 2) (x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x²(x² + 3x + 4) + 3x(x² + 3x + 4) + 2(x² + 3x + 4) + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 4x² + 3x³ + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 3x³ + 4x² + 9x² + 12x + 3x - 1

→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 6x³ + 13x² + 15x - 1

Step-by-step explanation:

Similar questions