Math, asked by rahilanjum301982, 6 months ago

1.Find the value of a (6)/(3sqrt(2)-2sqrt(3))=3sqrt(2)-a sqrt(3)]

Answers

Answered by pulakmath007
48

SOLUTION

TO DETERMINE

The value of a when

 \displaystyle \sf{ \frac{6}{3 \sqrt{2} - 2 \sqrt{3}  } = 3 \sqrt{2} - a \sqrt{3}   }

EVALUATION

 \displaystyle \sf{ \frac{6}{3 \sqrt{2} - 2 \sqrt{3}  } = 3 \sqrt{2} - a \sqrt{3}   }

 \displaystyle \sf{ \implies \frac{6(3 \sqrt{2}  +  2 \sqrt{3} )}{(3 \sqrt{2}  + 2 \sqrt{3} )(3 \sqrt{2} - 2 \sqrt{3} ) } = 3 \sqrt{2} - a \sqrt{3}   }

 \displaystyle \sf{ \implies \frac{6(3 \sqrt{2}  +  2 \sqrt{3} )}{ {(3 \sqrt{2} )}^{2}  -  {(2 \sqrt{3} )}^{2}   } = 3 \sqrt{2} - a \sqrt{3}   }

 \displaystyle \sf{ \implies \frac{6(3 \sqrt{2}  +  2 \sqrt{3} )}{ 18 - 12  } = 3 \sqrt{2} - a \sqrt{3}   }

 \displaystyle \sf{ \implies \frac{6(3 \sqrt{2}  +  2 \sqrt{3} )}{ 6  } = 3 \sqrt{2} - a \sqrt{3}   }

 \displaystyle \sf{ \implies (3 \sqrt{2}  +  2 \sqrt{3} ) = 3 \sqrt{2} - a \sqrt{3}   }

Comparing both sides we get a = - 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. compare the surds 6 root 3 & 3 root 12

https://brainly.in/question/26868950

2. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Answered by hanu75776
7

Answer:

This is a answer is -2

Step-by-step explanation:

this is a answers is -2

Attachments:
Similar questions