Math, asked by tanishabhadana15, 9 months ago

1. Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.
(1) t²-15​

Answers

Answered by EliteSoul
316

AnswEr:-

Zeroes of the polynomial = 15 & - 15

Step-by-step explanation:

Given:-

  • Polynomial = t² - 15

To find:-

  • Zeroes of the polynomial = ?
  • Verify the relationship between the zeroes and the coefficients.

Solution:-

Givdn polynomial:-

  • t² - 15

Therefore,

⇒ t² - 15 = 0

⇒ t² = 15

⇒ t = \pm √15

So,the zeroes are +15 & -15

\therefore{\underline{\sf{Zeroes \: of \: polynomial = + \sqrt{15} \: \& \: -\sqrt{15} }}}

\rule{200}{2}

Here,zeroes are +15 & -15.

Therefore,

  • \alpha = + √15
  • \beta = - √15

And the given polynomial:-

  • t² - 15 = 0

Here,

  • a = 1
  • b = 0
  • c = -15

Verifying the relationships between the zeroes & coefficients:-

First relationship :-

Sum of zeroes = -b/a

⇒ +√15 + (-√15) = -0/1

⇒ √15 - √15 = 0

⇒ 0 = 0 [Verified!]

\rule{100}1

2nd relationship:-

Product of zeroes = c/a

⇒ √15 × (-√15) = -15/1

⇒ -15 = -15 [Verified!]

Answered by Anonymous
191

Answer:

We Have Given Polynomial : t² – 15

:\implies\tt f(t) = 0\\\\\\:\implies\tt  t^2 - 15 = 0\\\\\\:\implies\tt t^2 = 15\\\\\\:\implies\tt t = \pm\:\sqrt{15}\\\\\\:\implies\underline{\boxed{\tt t = \sqrt{15} \quad or \quad - \:\sqrt{15}}}

\rule{160}{2}

\underline{\bigstar\:\textsf{Relation b/w zeroes and coefficient :}}

 \longrightarrow\:\:\sf t^2-15=0\\\\ \longrightarrow \: \:\sf a = 1 \quad b = 0 \quad c = -\:15\\\\\\ \qquad\bf{\dag}\:\: \underline\textsf{Sum of Zeroes :} \\\dashrightarrow\tt\:\: \alpha+\beta = \dfrac{- \:b}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{15} +( - \: \sqrt{15}) = \frac{ - \:0}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{ \red{\tt0 =0}}} \\\\\\\\\qquad\bf{\dag}\:\: \underline\textsf{Product of Zeroes :}\\\dashrightarrow\tt\:\: \alpha \beta =\dfrac{c}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{15} \times( - \: \sqrt{15}) = \dfrac{ - \:15}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{ \red{\tt - \:15 = - \:15}}}

Similar questions