Math, asked by dg214476, 9 months ago

(1+i)^4 (1+1/i)^4 = 16
proved this question please fast​

Answers

Answered by pulakmath007
9

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

 \displaystyle \:  {(1 + i)}^{4}  +  {(1 +  \frac{1}{i}) }^{4}

 =  \displaystyle \:  {(1 + i)}^{4}  +  {(1 +  \frac{i}{ {i}^{2} }) }^{4}

 =  \displaystyle \:  {(1 + i)}^{4}  +  {(1  - i) }^{4}

 =   \displaystyle \:   {(1 +  {i}^{2}  + 2i)}^{2}  + {(1 +  {i}^{2}   - 2i)}^{2}

 =   \displaystyle \:   {(1  - 1  + 2i)}^{2}  + {(1  -  1 - 2i)}^{2}

=   \displaystyle \:   {( 2i)}^{2}  + {(  - 2i)}^{2}

 = 4 {i}^{2}  + 4 {i}^{2}

 =  8 {i}^{2}

 = 8 \times ( - 1)

 =  - 8

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by Mounikamaddula
3

Answer:

Given:

The equation is,

(1+i)×(1+i/i)=16

Solution:

First take LHS,

(1+i)×(1+i)/i⁴

As we know that,

=-1

i⁴=(-1)²=1

Now,

→ (1+i)⁴×(1+i)⁴

→(1+i)⁸

Multiply and divide by 2 .

(2(1/2+i/2))

2(cosπ/4+i sinπ/4)

16(cos8π/4+isin8π/4)

16(cos2π+isin2π)

16(1-0)

16

Step-by-step explanation:

Hope it helps you.......

Similar questions