Math, asked by jbishnoi726, 3 months ago

1. (i). Write the value of J3/2(x).​

Answers

Answered by pulakmath007
11

SOLUTION

TO DETERMINE

The value of  \displaystyle \sf{J_{ \frac{3}{2} }(x)}

CONCEPT TO BE IMPLEMENTED

 \displaystyle \sf{J_{ n }(x)} is Bessel Function of order n

Now  \displaystyle \sf{J_{n }(x)} is defined as

 \displaystyle \sf{J_{ n + 1 }(x) =  \frac{2n}{x} J_{ n  }(x) - J_{ n  -  1 }(x)}

EVALUATION

Here  \displaystyle \sf{J_{ n }(x)} is Bessel Function of order n

Now  \displaystyle \sf{J_{n }(x)} is defined as

 \displaystyle \sf{J_{ n + 1 }(x) =  \frac{2n}{x} J_{ n  }(x) - J_{ n  -  1 }(x)}

Now Putting  \displaystyle \sf{n =  \frac{1}{2} } we get

 \displaystyle \sf{J_{  \frac{3}{2}  }(x) =  \frac{1}{x} J_{  \frac{1}{2}   }(x) - J_{  -  \frac{1}{2}  }(x)} \:  \:  \:  -  -  -  - (1)

We know that

 \displaystyle \sf{ J_{  \frac{1}{2}   }(x)  =  \sqrt{ \frac{2}{\pi x} } \sin x}

 \displaystyle \sf{ J_{  -  \frac{1}{2}   }(x)  =  \sqrt{ \frac{2}{\pi x} } \cos x}

Putting these values in Equation 1 we get

 \displaystyle \sf{J_{  \frac{3}{2}  }(x) =  \frac{1}{x} J_{  \frac{1}{2}   }(x) - J_{  -  \frac{1}{2}  }(x)}

 \displaystyle \sf{ \implies \: J_{  \frac{3}{2}  }(x) =  \frac{1}{x} \sqrt{ \frac{2}{\pi x} } \sin x - \sqrt{ \frac{2}{\pi x} } \cos x}

 \displaystyle \sf{ \implies \: J_{  \frac{3}{2}  }(x) =\sqrt{ \frac{2}{\pi x} }  \: \bigg(  \:  \frac{  \sin x}{x} - \cos x \:  \bigg)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016


amansharma264: Excellent
pulakmath007: Thank you Brother
Similar questions