Math, asked by boskinayak85, 10 months ago

+
1. If a:b::c:d, prove that
(pa+qb): (pc + qd) ::(ma – nb) :(mc –nd)​

Answers

Answered by pulakmath007
10

SOLUTION

GIVEN

a:b :: c:d

TO PROVE

(pa+qb) : (pc + qd) :: (ma – nb) : (mc –nd)

EVALUATION

Here it is given that

a:b :: c:d

\displaystyle\sf{ \frac{a}{b}  =  \frac{c}{d}  = k \:  \: (say)}

Then a = bk and c = dk

Now

(pa+qb) : (pc + qd)

\displaystyle\sf{ =  \frac{pa + qb}{pc + qd} }

\displaystyle\sf{ =  \frac{pkb + qb}{pdk + qd} }

\displaystyle\sf{ =  \frac{b(pk+ q)}{d(pk + q)} }

\displaystyle\sf{ =  \frac{b}{d} }

Again

(ma – nb) : (mc –nd)

\displaystyle\sf{ =  \frac{ma - nb}{mc - nd} }

\displaystyle\sf{ =  \frac{mbk- nb}{mdk - nd} }

\displaystyle\sf{ =  \frac{(mk- n)b}{(mk - n)d} }

\displaystyle\sf{ =  \frac{b}{d} }

∴ (pa+qb) : (pc + qd) :: (ma – nb) : (mc –nd)

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Ifa : b=c:d=e: f= 2:1, then (a + 2c + 3e) : (5b + 10d + 15f) is equal to:

https://brainly.in/question/23293448

2. If p/2q = 11/5 then p-2q/p+2q = ?

https://brainly.in/question/34239839

Similar questions