(1) If
b
then find the values of the following ratios.
3
a-6
7a+ 9b
7a-95
3a + 3b
Sa-36
2a +36
(iv)
(iii) 6
(ii) 2a - 36
Answers
Question:
If , then find the values of the given ratios.
Answer:
( i )
( ii )
( iii )
( iv )
Step-by-step-explanation:
( i )
We have given that,
We have to find the value of
Now,
───────────────────────────
( ii )
We have given that,
Now,
We have to find the value of
Now,
───────────────────────────
( iii )
We have given that,
Now,
We have to find the value of
Now,
───────────────────────────
( iv )
We have given that,
We have to find the value of
Now,
Answer:
If \displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
, then find the values of the given ratios.
Answer:
( i ) \displaystyle{\boxed{\red{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{22}{13}}}}
5a−3b
5a+3b
=
13
22
( ii ) \displaystyle{\boxed{\pink{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}\:=\:\dfrac{125}{71}}}}
2a
2
−3b
2
2a
2
+3b
2
=
71
125
( iii ) \displaystyle{\boxed{\orange{\sf\:\dfrac{a^3\:-\:b^3}{b^3}\:=\:\dfrac{316}{27}}}}
b
3
a
3
−b
3
=
27
316
( iv ) \displaystyle{\boxed{\blue{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{38}{11}}}}
7a−9b
7a+9b
=
11
38
Step-by-step-explanation:
( i )
We have given that,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
We have to find the value of
\displaystyle{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}}
5a−3b
5a+3b
Now,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
\displaystyle{\implies\sf\:\dfrac{a}{b}\:\times\:\dfrac{5}{3}\:=\:\dfrac{7}{3}\:\times\:\dfrac{5}{3}\:\:\:\:-\:-\:\left[\:Multiplying\:both\:sides\:by\:\dfrac{5}{3}\:\right]}⟹
b
a
×
3
5
=
3
7
×
3
5
−−[Multiplyingbothsidesby
3
5
]
\displaystyle{\implies\sf\:\dfrac{5a}{3b}\:=\:\dfrac{35}{9}}⟹
3b
5a
=
9
35
\displaystyle{\implies\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{35\:+\:9}{35\:-\:9}\:\:\:\:-\:-\:[\:By\:Componendo\:-\:Dividendo\:]}⟹
5a−3b
5a+3b
=
35−9
35+9
−−[ByComponendo−Dividendo]
\displaystyle{\implies\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\cancel{\dfrac{44}{26}}}⟹
5a−3b
5a+3b
=
26
44
\displaystyle{\implies\boxed{\red{\sf\:\dfrac{5a\:+\:3b}{5a\:-\:3b}\:=\:\dfrac{22}{13}}}}⟹
5a−3b
5a+3b
=
13
22
───────────────────────────
( ii )
We have given that,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
Now,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
\displaystyle{\implies\sf\:\dfrac{a}{7}\:=\:\dfrac{b}{3}\:=\:k\:\:\:-\:-\:-\:[\:By\:cross\:multiplication\:]}⟹
7
a
=
3
b
=k−−−[Bycrossmultiplication]
\displaystyle{\implies\sf\:a\:=\:7k\:\:\&\:\:b\:=\:3k}⟹a=7k&b=3k
We have to find the value of
\displaystyle{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}}
2a
2
−3b
2
2a
2
+3b
2
Now,
\displaystyle{\implies\sf\:\dfrac{2\:\times\:(\:7k\:)^2\:+\:3\:\times\:(\:3k\:)^2}{2\:\times\:(\:7k\:)^2\:-\:3\:\times\:(\:3\:k\:)^2}}⟹
2×(7k)
2
−3×(3k)
2
2×(7k)
2
+3×(3k)
2
\displaystyle{\implies\sf\:\dfrac{2\:\times\:49k^2\:+\:3\:\times\:9k^2}{2\:\times\:49k^2\:-\:3\:\times\:9k^2}}⟹
2×49k
2
−3×9k
2
2×49k
2
+3×9k
2
\displaystyle{\implies\sf\:\dfrac{98k^2\:+\:27k^2}{98k^2\:-\:27k^2}}⟹
98k
2
−27k
2
98k
2
+27k
2
\displaystyle{\implies\sf\:\dfrac{125\:\cancel{k^2}}{71\:\cancel{k^2}}}⟹
71
k
2
125
k
2
\displaystyle{\implies\boxed{\pink{\sf\:\dfrac{2a^2\:+\:3b^2}{2a^2\:-\:3b^2}\:=\:\dfrac{125}{71}}}}⟹
2a
2
−3b
2
2a
2
+3b
2
=
71
125
───────────────────────────
( iii )
We have given that,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
Now,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
\displaystyle{\implies\sf\:\dfrac{a}{7}\:=\:\dfrac{b}{3}\:=\:k\:\:\:-\:-\:-\:[\:By\:cross\:multiplication\:]}⟹
7
a
=
3
b
=k−−−[Bycrossmultiplication]
\displaystyle{\implies\sf\:a\:=\:7k\:\:\&\:\:b\:=\:3k}⟹a=7k&b=3k
We have to find the value of
\displaystyle{\sf\:\dfrac{a^3\:-\:b^3}{b^3}}
b
3
a
3
−b
3
Now,
\displaystyle{\implies\sf\:\dfrac{(\:7k\:)^3\:-\:(\:3k\:)^3}{(\:3k\:)^3}}⟹
(3k)
3
(7k)
3
−(3k)
3
\displaystyle{\implies\sf\:\dfrac{343\:k^3\:-\:27\:k^3}{27\:k^3}}⟹
27k
3
343k
3
−27k
3
\displaystyle{\implies\sf\:\dfrac{316\:\cancel{k^3}}{27\:\cancel{k^3}}}⟹
27
k
3
316
k
3
\displaystyle{\implies\boxed{\orange{\sf\:\dfrac{a^3\:-\:b^3}{b^3}\:=\:\dfrac{316}{27}}}}⟹
b
3
a
3
−b
3
=
27
316
───────────────────────────
( iv )
We have given that,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
We have to find the value of
\displaystyle{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}}
7a−9b
7a+9b
Now,
\displaystyle{\sf\:\dfrac{a}{b}\:=\:\dfrac{7}{3}}
b
a
=
3
7
\displaystyle{\implies\sf\:\dfrac{a}{b}\:\times\:\dfrac{7}{9}\:=\:\dfrac{7}{3}\:\times\:\dfrac{7}{9}\:\:\:\:-\:-\:\left[\:Multiplying\:both\:sides\:by\:\dfrac{7}{9}\:\right]}⟹
b
a
×
9
7
=
3
7
×
9
7
−−[Multiplyingbothsidesby
9
7
]
\displaystyle{\implies\sf\:\dfrac{7a}{9b}\:=\:\dfrac{49}{27}}⟹
9b
7a
=
27
49
\displaystyle{\implies\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{49\:+\:27}{49\:-\:27}\:\:\:\:-\:-\:[\:By\:Componendo\:-\:Dividendo\:]}⟹
7a−9b
7a+9b
=
49−27
49+27
−−[ByComponendo−Dividendo]
\displaystyle{\implies\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\cancel{\dfrac{76}{22}}}⟹
7a−9b
7a+9b
=
22
76
[tex]\displaystyle{\implies\boxed{\blue{\sf\:\dfrac{7a\:+\:9b}{7a\:-\:9b}\:=\:\dfrac{38}{11}}}}⟹
7a−9b
7a+9b
=
11
38