Math, asked by Rajeshwari8025, 4 months ago

1) If ∠P + ∠Q = 90°, let's us show that, \sqrt{\dfrac{sinP}{cosQ} - sinP cosQ = cosP}
No spam​

Answers

Answered by misscutie94
49

Answer:

SOLUTION :-

\leadsto L.H.S :- \sqrt{\dfrac{sinP}{cosQ} - sinP cosQ}

=> \sqrt{\dfrac{sinP}{cos(90° - P)}sinP . cos(90° - p)}

[ \angleP + \angleQ = 90° => \angleQ = 90° - \angleP ]

=> \sqrt{\dfrac{sinP}{sinP}sinP . sinP}

=> \sqrt{1 - {sin}^{2} P}

=> \sqrt{{cos}^{2}P}

=> cosP

L.H.S = R.H.S

\mapsto \boxed{\bold{\large{PROVED}}}

Answered by LaeeqAhmed
1

\color{red}\huge{\underline{\underline{GIVEN\dag}}}

  • ∠P + ∠Q = 90°

\color{red}\huge{\underline{\underline{SOLUTION\dag}}}

 \sqrt{\dfrac{sinP}{cosQ} - sinP cosQ }= cosP

But,We know that;

∠Q =90°-∠P

\sqrt{\dfrac{sinP}{cos(90 - P)} - sinP cos(90 - P)}

We know that;

\color{blue}{\boxed{\cos(90-θ)=\sinθ}}

 = \sqrt{\dfrac{sinP}{ sinP} - sinP \times    sin  P }

We also know that;

\color{blue}{\boxed{1-\sin^{2}θ=\cos^{2}θ}}

 =  \sqrt{1 -  \sin ^{2} ( P) }

 =  \sqrt{ \cos {}^{2} (P) }

 \color{orange} =  \cos( P)

Therefore,

L.H.S.=R.H.S.

HOPE THAT HELPS!!

Similar questions