1. If Sin 0 + Cos 0 = x, Prove that Sin⁴0 + Cos⁴0 = 2- (x2-1) / 2.
2. If Sin 0 + Cos 0 = a, Prove That Sin60 +Cos6 0 = 4-3 (a²- 1)² / 4.
Answers
Given : sin ∅ + cos ∅ = x
On squaring both sides,
→ (sin ∅ + cos ∅)² = x²
→ sin²∅ + cos²∅ + 2 cos∅ sin∅ = x²
→ 1 + 2 sin∅·cos∅ = x²
→ 2 cos∅ · sin∅ = (x² - 1)
→ cos∅ · sin∅ = (x² - 1)/2
→ sin²∅ + cos²∅ = 1
→ (sin²∅ + cos²∅)² = 1
→ sin⁴∅ + cos⁴∅ + 2·sin²∅·cos²∅ = 1
→ sin⁴∅ + cos⁴∅ + 2(sin∅·cos∅)² = 1
→ sin⁴∅ + cos⁴∅ + 2[(x² - 1)²/4]= 1
→ sin⁴∅ + cos⁴∅ = 1 - (x² - 1)²/2
→ sin⁴∅ + cos⁴∅ = [2 - (x² - 1)²]/2
Hence Proved
______________________________
2. Given : sin∅ + cos∅ = a
On squaring both sides,
→ sin²∅ + cos²∅ + 2·cos∅·sin∅ = a²
→ 2·cos∅·sin∅ = a² - 1
→ cos∅·sin∅ = (a² - 1)/2
→ sin⁶∅ + cos⁶∅ = (sin²∅)³ + (cos²∅)³
→ (sin²∅ + cos²∅)³ - 3(sin∅·cos∅)²(sin²∅ + cos²∅)
→ 1³ - 3(a² - 1)²/4 × 1
→ [4 - 3(a² - 1)²]/4
Hence Proved
According to the given questions squaring both sides.
sin ∅ + cos ∅² = x²
sin²∅ + cos²∅ + 2 cos∅ sin∅ = x²
1 + 2 sin∅ cos∅ = x²
2 cos∅ sin∅ = (x² - 1)
cos∅ sin∅ = (x² - 1)/2
sin²∅ + cos²∅ = 1
sin²∅ + cos²∅² = 1
sin⁴∅ + cos⁴∅ + 2sin²∅cos²∅ = 1
sin⁴∅ + cos⁴∅ + 2(sin∅cos∅)² = 1
sin⁴∅ + cos⁴∅ + 2[(x² - 1)²/4]= 1
sin⁴∅ + cos⁴∅ = 1 - (x² - 1)²/2
sin⁴∅ + cos⁴∅ = [2 - (x² - 1)²]/2
Proved that Sin⁴∅+ Cos⁴∅ = 2- (x2-1) / 2
According to the given questions squaring both sides.
sin²∅ + cos²∅ + 2 cos∅ sin∅ = a²
2cos∅ sin∅ = a² - 1
cos∅sin∅ = (a² - 1)/2
sin⁶∅ + cos⁶∅ = (sin²∅)³ + (cos²∅)³
(sin²∅ + cos²∅)³ - 3(sin∅·cos∅)²
(sin²∅ + cos²∅)
1³ - 3(a² - 1)²/4 × 1
(4 - 3(a² - 1)²)/4
Proved that Sin60 +Cos6 0 = 4-3 (a²- 1)² / 4.