(1) If sinθ=cotα tanγ and tanθ=cosα tanβ then prove that one of the value of cosθ=cosβsecγ
(2) If sin²θ = cos³θ, prove that, cot^6θ - cot^2θ = 1
Answers
Answer:
Step-by-step explanation:
(1) sinθ=cotα tanγ
tanθ=cosα tanβ
=> Sinθ/Cosθ = cosα tanβ
=> Cotαtanγ/Cosαtanβ = Cosθ
=> tanγ/Sinαtanβ = Cosθ
=> Sinγ/Cosγ / Sinα.Sinβ/Cosβ = Cosθ
=> Cosθ = Cosβ * Sinγ /Cosγ * Sinα * Sinβ
=> Cosθ = (CosβSecγ) (Sinγ/SinαSinβ)
(2) Sin²θ = Cos³θ
Cot⁶θ - Cot²θ
=> Cot⁶θ - Cot²θ
=> Cos⁶θ/Sin⁶θ - Cos²θ / Sin²θ
=> (Cos³θ)² / Sin⁶θ - Cos²θ/Cos³θ
=> Sin⁴θ/Sin⁶θ - 1/Cosθ (∵ Cos³θ = Sin²θ)
=> 1/Sin²θ - 1/Cosθ
=> 1/Cos³θ - 1/Cosθ (∵ Sin²θ = Cos³θ)
=> 1 - Cos²θ / Cos³θ
=> Sin²θ / Sin²θ (∵ 1 - Cos²θ = Sin²θ)
=> 1
= R.H.S
Hence proved.
(1) Please look at the picture attached. sin²theta should be written in the whitenered area for this question.
(2) cot^6x - cot²x = cos^6x/sin^6x - cos²x/sin²x = (cos^3x)²/sin^6x - cos²x/cos³x = (sin²x)²/sin^6x - 1/cosx = 1/sin²x - 1/cos x = 1/cos³x - 1/cosx = sin²x/cos³x = sin²x/sin²x = 1