1. If sin (x-2y)=cos(4y-x) then the value of cot 2y is?
2. If cot A = 8/15, then what's the value of √1-cos A/1+cos A ?
Answers
Step-by-step explanation:
1) sin (x-2y) = cos (4y-x)
or, sin (x-2y) = sin (90 - 4y + x)
or, x-2y = 90-4y+x
or, 4y-2y+x-x = 90
or, 2y = 90
or, y = 45
So, cot 2y = cot 2×45 = cot 90 = ∞
THE SECOND PART IS ALSO EASY BUT IT IS DIFFICULT TO TYPE IT AND SHOW THE SUM. SO, I DID ONLY THE FIRST PART.
HOPE IT HELPS
Answer:
1) cot (2y) = 0
2)
Step-by-step explanation:
1) Given: sin (x-2y) = cos (4y-x)
To find: cot (2y)
Solution:
sin (x-2y) = cos(4y-x)
⇒ sin (x-2y) = sin (90° - (4y - x))
⇒ sin (x-2y) = sin (90° - 4y + x)
⇒ x - 2y = 90° - 4y + x
⇒ x - 2y + 4y - x = 90°
⇒ 2y = 90°
⇒ y = 45°
Now, cot (2y) = cot (2×45°)
⇒ cot (2y) = cot 90°
⇒ cot (2y) = 0
2) Given: cot A = 8/15
To find:
Solution:
cot A = 8/15
⇒ Base = 8 and Perpendicular = 15
⇒ Hypotenuse = √(8² + 15²) = √(64 + 225) = √289 = 17
⇒ cos A = 8/17
Formulas used :-
1) sin A = cos (90° - A)
2) If sin A = sin B ⇒ A = B
3) cot A = Base / Perpendicular
4) cos A = Base / Hypotenuse
5) (Hypotenuse)² = (Perpendicular)² + (Base)²
or