Math, asked by ZaydTayyab, 11 months ago

1.If surface area of sphere is equal to curved surface area of Hemisphere,
then radius of sphere is equal to two times of radius of hemisphere,
Are you agree ? Explain?​

Answers

Answered by mysticd
3

 \pink { No, \: I \: doesn't \:agree }

 Let \: Radius \: of \: Hemisphere = r \:units

 Radius \: of \: the \: Sphere =  R \: units

\pink { Surface \: area \: of \: sphere \:is }

 \pink { equal \: to \: Surface \:area \:of \: }

 \pink { hemisphere }

 \implies 4 \pi (R)^{2} = 2 \pi r^{2}

 \implies 2 R^{2} = r^{2}

 \implies ( \sqrt{2} R )^{2} = r^{2}

 \implies \sqrt{2} R = r

Therefore.,

 \red { R } ≠ \green {2r }

 \pink {Radius \: of \: Sphere }≠ \blue {two \: times \:of  Radius \: of \: Hemisphere}

•••♪

Answered by siddhant27bs
2

Step-by-step explanation:

No,Idoesn′tagree

Let \: Radius \: of \: Hemisphere = r \:unitsLetRadiusofHemisphere=runits

Radius \: of \: the \: Sphere = R \: unitsRadiusoftheSphere=Runits

\pink { Surface \: area \: of \: sphere \:is }Surfaceareaofsphereis

\pink { equal \: to \: Surface \:area \:of \: }equaltoSurfaceareaof

\pink { hemisphere }hemisphere

\implies 4 \pi (R)^{2} = 2 \pi r^{2}⟹4π(R)2=2πr2

\implies 2 R^{2} = r^{2}⟹2R2=r2

\implies ( \sqrt{2} R )^{2} = r^{2}⟹(2R)2=r2

\implies \sqrt{2} R = r⟹2R=r

Therefore.,

\red { R } ≠ \green {2r }R=2r

\pink {Radius \: of \: Sphere }≠ \blue {two \: times \:of Radius \: of \: Hemisphere}RadiusofSphere=twotimesofRadiusofHemisphere

Similar questions