Math, asked by nalamamidiraja, 7 months ago

1. If the latus rectum subtends a right angle at the centre of the hyperbola then its
eccentricity

Answers

Answered by raotd
0

Answer:Given LR of hyperbola subtends 90  

0

 at its centre

Let there be a hyperbola :  

a  

2

 

x  

2

 

​  

−  

b  

2

 

y  

2

 

​  

=1----------------(1)

So, eccentricity , e =  

1+  

a  

2

 

b  

2

 

​  

 

​  

 

Ends of LR, L: (ae,  

a

b  

2

 

​  

) &L'(ae,  

a

−b  

2

 

​  

)

C : centre(0,0)

∠LCL  

=90  

0

 

⇒△LCL  

=right angled triangle

⇒ It must follow pythogores theorem (H  

2

=P  

2

+B  

2

)

ForLC and L  

Cand LL  

 

LL'=length of  

a

2b  

2

 

​  

 

LC

=  

(ae−0)  

2

+(  

a

b  

2

 

​  

−0)

​  

=  

a  

2

e  

2

+  

a  

2

 

b  

4

 

​  

 

​  

=  

a  

2

 

a  

4

e  

2

+b  

4

 

​  

 

​  

--------------------(2)

LC

=  

L  

C

 due to symmetry along x axis--------------(3)

⇒ Applying Pythagoras theorem , (  

LL  

 

)  

2

=(  

LC

)  

2

(  

L  

C

)  

2

 

⇒  

a  

2

 

4b  

4

 

​  

=2(LC)  

2

  from equation (3)

⇒  

a  

2

 

4b  

4

 

​  

=2(a  

2

e  

2

+  

a  

2

 

b  

4

 

​  

) from equation (2)

⇒  

a  

2

 

4b  

4

 

​  

−  

a  

2

 

2b  

4

 

​  

=2a  

2

e  

2

 

⇒  

a  

2

 

2b  

4

 

​  

=2a  

2

e  

2

 

⇒b  

4

=a  

4

e  

2

 

⇒(a  

2

(e  

2

−1))  

2

=a  

4

e  

2

 

(a  

2

(e  

2

−1))

⇒a  

4

(e  

2

−1)  

2

=a  

4

e  

2

 

⇒(e  

2

−1)  

2

=e  

2

⇒e  

2

−1=±e⇒e  

2

±e−1=0

e=  

2

±1±  

1+4

​  

 

​  

=  

2

±1±  

5

​  

 

​  

 

e

=  

2

−1−  

5

​  

 

​  

 (negative),  

2

1−  

5

​  

 

​  

 

e=  

2

5

​  

−1

​  

,  

2

1+  

5

​  

 

​  

.

Step-by-step explanation:Follow me

Similar questions