Math, asked by chinna6859294, 9 months ago

1) if the roots of the equation ax^2+bx+c=0 are in the ratio 2:3, then find the condition.​

Answers

Answered by Needthat
1

Answer:

\large{\bold{8b^2=25ac}}

Step-by-step explanation:

ax^2+bx+c=0

Given \quad \alpha:\beta=2:3

\frac{\alpha}{\beta}=\frac{2}{3}

WKT

\frac{\alpha}{\beta}=\frac{-b+\sqrt{b^2-4ac}}{-b-\sqrt{b^2-4ac}}

\frac{2}{3}=\frac{-b+\sqrt{b^2-4ac}}{-b-\sqrt{b^2-4ac}}

=>-2b-2\sqrt{b^2-4ac}=-3b+3\sqrt{b^2-4ac}

b=5\sqrt{b^2-4ac}

Squaring on Both Sides

b^2=25(b^2-4ac)

24b^2=100ac

8b^2=25ac

HOPE IT HELPS

Similar questions