1. If x+y+z=0, then show that x^2+y^2+z^2=-2(xy+yz+zx).
7
2. If a=3+b, prove that a^3-b^3-9ab-27.
3. Factorise 9 x^2-12x+4.
4. Factorise 343+27t^3
Please...
I will give you 50 points
Don't cheat
Answers
1. x + y + z = 0
(x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
or (0)² = x² + y² + z² + 2xy + 2yz + 2zx
or 0 = x² + y² + z² + 2xy + 2yz + 2zx
or 0 - 2xy - 2yz - 2zx = x² + y² + z²
or x² + y² + z² = -2xy - 2yz - 2zx
or x² + y² + z² = -2(xy + yz + zx)
2. Question is incomplete!!!
3. 9x² - 12x + 4
= (3x)² - 2(3x)(2) + (2)²
= (3x - 2)²
= (3x -2)(3x - 2).
4. 343 + 27t³
= (7)³ + (3t)³
= (7 + 3t){(7)² - (7)(3t) + (3t)²}
= (7 + 3t)(49 - 21t + 9t²).
Identity used above....
a³ + b³ = (a+b)(a²-ab+b²).
Answer:-
1] x + y + z = 0
(x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
or (0)² = x² + y² + z² + 2xy + 2yz + 2zx
or0 = x² + y² + z² + 2xy + 2yz + 2zx
or0 - 2xy - 2yz - 2zx = x² + y² + z²
orx² + y² + z² = -2xy - 2yz - 2zx
or x² + y² + z² = -2(xy + yz + zx)
2] a= 3+b ( given).
a-b=3.
take cube both sides.
(a-b)³ = (3)³
a³ - b³ -3ab * 3 = 27.
a³ - b³ - 9 ab = 27.
3] 9x² - 12x + 4
= (3x)² - 2(3x)(2) + (2)²
= (3x - 2)²
= (3x -2)(3x - 2).
4] 343 + 27t³
= (7)³ + (3t)³
= (7 + 3t){(7)² - (7)(3t) + (3t)²}
= (7 + 3t)(49 - 21t + 9t²).
identity used
a³ + b³ = (a+b)(a²-ab+b²).
i hope it helps you.