Math, asked by gayatrikalbande205, 8 months ago

1. In A ABC, right-angled at B, AB= 24 cm, BC = 7 cm. Determine:
(1) sin A, cos A
(ü) sin C, cos C​

Answers

Answered by Anonymous
7

In ABC, AB = 24cm, BC = 7 cm. AC = ?

By using Pythagoras Theorem, we get the value of AC.

(HYPOTENUSE)² = (SIDE)² + (SIDE)²

(AC)² = (BC)² + (AB)²

(AC)² = (7)² + (24)²

(AC)² = 49 + 576

(AC)² = 625

AC = 625

AC = 25.

AC = 25 cm.

(1) sin A, cos A

sin A :

sin A = opposite/hypotenuse

sin A = BC/AC

sin A = 7/25

cos A :

cos A = adjacent/hypotenuse

cos A = AB/AC

cos A = 24/25

(2) sin C, cos C

sin C :

sin C = opposite/hypotenuse

sin C = AB/AC

sin C = 24/25

cos C :

cos C = adjacent/hypotenuse

cos C = BC/AC

cos C = 7/25

Hence, it is solved...

Step-by-step explanation:

þLÈÄ§È MÄRK ħ ßRÄÌñLÌȧ†

Attachments:
Similar questions