1. In A ABC, right-angled at B, AB= 24 cm, BC = 7 cm. Determine:
(1) sin A, cos A
(ü) sin C, cos C
Answers
Answered by
7
In ∆ ABC, AB = 24cm, BC = 7 cm. AC = ?
↪ By using Pythagoras Theorem, we get the value of AC.
(HYPOTENUSE)² = (SIDE)² + (SIDE)²
➡ (AC)² = (BC)² + (AB)²
➡ (AC)² = (7)² + (24)²
➡ (AC)² = 49 + 576
➡ (AC)² = 625
➡ AC = √625
➡ AC = 25.
∴ AC = 25 cm.
(1) sin A, cos A
↪ sin A :
➡ sin A = opposite/hypotenuse
➡ sin A = BC/AC
➡ sin A = 7/25
↪ cos A :
➡ cos A = adjacent/hypotenuse
➡ cos A = AB/AC
➡ cos A = 24/25
(2) sin C, cos C
↪ sin C :
➡ sin C = opposite/hypotenuse
➡ sin C = AB/AC
➡ sin C = 24/25
↪ cos C :
➡ cos C = adjacent/hypotenuse
➡ cos C = BC/AC
➡ cos C = 7/25
Hence, it is solved...
Step-by-step explanation:
þLÈÄ§È MÄRK MÈ Ä§ ßRÄÌñLÌȧ†✌✌✌
Attachments:
Similar questions