1. In A POR, if PQ=PR. and R = 70° then 2Q=?
Answers
Answer:
Answer :-
θ = 60°
Explanation :-
\begin{lgathered}\rm \dfrac{cos \theta}{1 - sin \theta } + \dfrac{cos \theta}{1 + sin \theta} = 4 \\ \\ \\\end{lgathered}
1−sinθ
cosθ
+
1+sinθ
cosθ
=4
\begin{lgathered}\text{Taking LCM} \\ \\ \\\end{lgathered}
Taking LCM
\begin{lgathered}\rm \implies \dfrac{cos \theta(1 + sin \theta) + cos \theta(1 - sin \theta)}{(1 - sin \theta)(1 + sin \theta) }= 4 \\ \\ \\\end{lgathered}
⟹
(1−sinθ)(1+sinθ)
cosθ(1+sinθ)+cosθ(1−sinθ)
=4
\begin{lgathered}\rm \implies \dfrac{cos \theta + cos \theta .sin \theta+ cos \theta - cos \theta .sin \theta}{1^{2} - sin^{2} \theta }= 4 \\ \\ \\\end{lgathered}
⟹
1
2
−sin
2
θ
cosθ+cosθ.sinθ+cosθ−cosθ.sinθ
=4
\begin{lgathered}\boxed{\boxed{ \bf \because (x - y)(x + y) = {x}^{2} - {y}^{2} }} \\ \\ \\\end{lgathered}
∵(x−y)(x+y)=x
2
−y
2
\begin{lgathered}\rm \implies \dfrac{2cos \theta }{1 - sin^{2} \theta }= 4 \\ \\ \\\end{lgathered}
⟹
1−sin
2
θ
2cosθ
=4
\begin{lgathered}\rm \implies \dfrac{2cos \theta }{cos^{2} \theta}= 4 \\ \\ \\\end{lgathered}
⟹
cos
2
θ
2cosθ
=4
\begin{lgathered}\boxed{\boxed{ \bf \because 1 - sin^{2} \theta = cos^{2} \theta }} \\ \\ \\\end{lgathered}
∵1−sin
2
θ=cos
2
θ
\begin{lgathered}\rm \implies \dfrac{2cos \theta }{cos\theta.cos \theta}= 4 \\ \\ \\\end{lgathered}
⟹
cosθ.cosθ
2cosθ
=4
\begin{lgathered}\rm \implies \dfrac{2 }{cos \theta}= 4 \\ \\ \\\end{lgathered}