Accountancy, asked by badgyuok, 2 months ago

1. In figure. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).​

Answers

Answered by shuhaab
4

Answer:

i) Given, in △ ABC, DE∥BC

∴ AD/DB = AE/EC [Using Basic proportionality theorem]

⇒1.5/3 = 1/EC

⇒EC = 3/1.5

EC = 3×10/15 = 2 cm

Hence, EC = 2 cm.

(ii) Given, in △ ABC, DE∥BC

∴ AD/DB = AE/EC [Using Basic proportionality theorem]

⇒ AD/7.2 = 1.8 / 5.4

⇒ AD = 1.8 ×7.2/5.4 = (18/10)×(72/10)×(10/54) = 24/10

⇒ AD = 2.4

Hence, AD = 2.4 cm.

Answered by tambebushra0710
1

Answer:

Explanation:

Using Basic proportionality theorem,  

∴  

DB

AD

=  

EC

AE

 

⇒  

3

1.5

=  

EC

1

 

⇒EC=  

1.5

3

 

EC=3×  

15

10

=2 cm

EC=2 cm.

(ii) In △ABC,DE∥BC (Given)

Using Basic proportionality theorem,

∴  

DB

AD

=  

EC

AE

 

⇒  

7.2

AD

=  

5.4

1.8

 

⇒AD=1.8×  

5.4

7.2

=  

10

18

×  

10

72

×  

54

10

=  

10

24

 

⇒AD=2.4cm

So, AD=2.4 cm

mark as brainlist

Similar questions