Math, asked by drstark1246, 11 months ago


1. In the given figure, lines PQ and RS intersect each other at point O; ray OA an
OB bisect |POR and POS respectively. If POA : POB = 2:7, then find SOQ a
|BOQ.

Attachments:

Answers

Answered by amitnrw
10

Answer:

∠SOQ = 40°

∠BOQ = 110°

Step-by-step explanation:

In the given figure, lines PQ and RS intersect each other at point O; ray OA an  OB bisect |POR and POS respectively. If POA : POB = 2:7, then find SOQ a

|BOQ.

Let Say ∠POR = x°

∠POS + ∠POR  = 180°  ( RS Straight line)

=>∠POS + x° = 180°

=> ∠POS = 180° - x°

OA  bisects ∠POR

=> ∠POA = (1/2)∠POR  = x/2

OB  bisects ∠POS

=> ∠POB = (1/2)∠POS  = (180 -x)/2 = 90 - x/2

∠POA : ∠POB = 2:7

=> ∠POA / ∠POB = 2/7

=> 7 ∠POA  = 2 ∠POB

=> 7 (x/2) = 2 (90 - x/2)

=> 7x/2 = 180 - x

=> 9x/2 = 180

=> x = 40

∠POR = 40°

∠SOQ = ∠POR  ( opposite angles)

=>∠SOQ = 40°

∠BOQ =∠BOS + ∠SOQ

=> ∠BOQ = ( 180 - 40)/2  + 40

=> ∠BOQ = 110°

Answered by 1331anjalikumari
1

Answer:

POR+∠POS=180

o

.....(1) (Linear pair of angles)

Ir is given that, ray OA and ray OB bisect ∠POR and ∠POS respectively.

Therefore,

∠POA=

2

1

∠POR and ∠POB=

2

1

∠POS

⇒∠POA+∠POB=

2

1

{POR+POS}

=

2

1

×180

o

=90

o

(From equation 1)

Now, if ∠POA+∠POB=2:7

Sum of the ratios =2+7=9

then, we have ∠POA=

9

2

×90

o

=20

o

and ∠POB=

9

7

×90

o

=70

o

∠POR=2×∠POA=2×20

o

=40

o

∠SOQ=∠POR (Vertically opposite angles)

∴∠SOQ=40

o

∠BOQ=∠BOS+∠SOQ

=∠POB+∠SOQ (Since, OB bisect ∠POS)

(∠BOS=∠POB)

=70

o

+40

o

=110

o

∴∠BOQ=110

o

Similar questions