1.In the quadratic equation 2 sin^x - 3 sinx+1=0 the value of x
2.if a sphere is inscribed in a cube of side a, then volume of sphere is
3.if sinA=cosB then sin(A+B)=
4.if the diagonals of rhombus are 10cm and 24cm then its area is
Answers
Answered by
0
1)
2sin²x - 2sinx - sinx + 1 = 0
⇒ (2sinx - 1)(sinx - 1) = 0
so sinx = 1 ⇒ x = π/2 or sinx = ⇒ x = π/6
2)
so the diameter of the sphere is a unitand radius = a/2 unit
so volume = = πa³/6 unit³
3)
so sin(A + B) = sinAcosB + sinB
= sin²A + sinB
= sin²A + sin²B
4)
so the area is = 120 cm²
2sin²x - 2sinx - sinx + 1 = 0
⇒ (2sinx - 1)(sinx - 1) = 0
so sinx = 1 ⇒ x = π/2 or sinx = ⇒ x = π/6
2)
so the diameter of the sphere is a unitand radius = a/2 unit
so volume = = πa³/6 unit³
3)
so sin(A + B) = sinAcosB + sinB
= sin²A + sinB
= sin²A + sin²B
4)
so the area is = 120 cm²
Answered by
0
1)
2sin²x - 2sinx - sinx + 1 = 0
⇒ (2sinx - 1)(sinx - 1) = 0
so sinx = 1 ⇒ x = π/2 or sinx = ⇒ x = π/6
2)
so the diameter of the sphere is a unitand radius = a/2 unit
so volume = = πa³/6 unit³
3)
so sin(A + B) = sinAcosB + sinB
= sin²A + sinB
= sin²A + sin²B
4)
so the area is = 120 cm²
2sin²x - 2sinx - sinx + 1 = 0
⇒ (2sinx - 1)(sinx - 1) = 0
so sinx = 1 ⇒ x = π/2 or sinx = ⇒ x = π/6
2)
so the diameter of the sphere is a unitand radius = a/2 unit
so volume = = πa³/6 unit³
3)
so sin(A + B) = sinAcosB + sinB
= sin²A + sinB
= sin²A + sin²B
4)
so the area is = 120 cm²
Similar questions