Math, asked by mnandini913, 9 months ago

1. Let p(x) = 2x* – X – x² + 3x + 8.
i) What is the remainder when p(x) is divided by (x - 1)?
ii) What is p(1)?​

Answers

Answered by Rose08
12

Solution :-

What is the remainder when p(x) = 2x - x - x² + 3x + 8 is divided by (x - 1)?

= Fist, Let's find the zero of the polynomial (x - 1) :

=> x - 1 = 0

.°. x = 1

Putting, the value of p(1) in the equation -

= 2x - x - x² + 3x + 8

= 2 × 1 - 1 - 1² + 3 × 1 + 8

= 2 - 1 - 1 + 3 + 8

= 13 - 2

= 11

Hence, the remainder is 11.

The value of p(1) will also be the same (11) since we've already placed the value of x as 1 in p(x).

Additional information :-

  • Polynomials are terms which consists of variables and coefficients. Eg :- x² + 2x - 3
  • Quadratic equations are equations which are in the form of - ax² + bx + c

Answered by Anonymous
2

Answer:

Solution :-

What is the remainder when p(x) = 2x - x - x² + 3x + 8 is divided by (x - 1)?

= Fist, Let's find the zero of the polynomial (x - 1) :

=> x - 1 = 0

.°. x = 1

Putting, the value of p(1) in the equation -

= 2x - x - x² + 3x + 8

= 2 × 1 - 1 - 1² + 3 × 1 + 8

= 2 - 1 - 1 + 3 + 8

= 13 - 2

= 11

Hence, the remainder is 11.

The value of p(1) will also be the same (11) since we've already placed the value of x as 1 in p(x).

Additional information :-

Polynomials are terms which consists of variables and coefficients. Eg :- x² + 2x - 3

Quadratic equations are equations which are in the form of - ax² + bx + c

Similar questions