Math, asked by titiki4567, 8 hours ago

(1) log2 x + logs 8x + log32 x = 15​

Answers

Answered by mathdude500
3

Appropriate Question : -

Solve for x

\rm :\longmapsto\: log_{2}(x)  +  log_{8}(x)   + log_{32}(x)  = 15

 \red{\large\underline{\sf{Solution-}}}

Given Logarithmic equation is

\rm :\longmapsto\: log_{2}(x)  +  log_{8}(x)   + log_{32}(x)  = 15

can be rewritten as

\rm :\longmapsto\: log_{2}(x)  +  log_{ {2}^{3} }(x)   + log_{ {2}^{5} }(x)  = 15

We know,

\rm :\longmapsto\:\boxed{\tt{  log_{ {x}^{a} }( {y}^{b} ) =  \frac{b}{a} log_{x}(y) \: }}

So, using this identity, we get

\rm :\longmapsto\: log_{2}(x) + \dfrac{1}{3}log_{2}(x) + \dfrac{1}{5}log_{2}(x) = 15

\rm :\longmapsto\:log_{2}(x)\bigg(1 + \dfrac{1}{3}  + \dfrac{1}{5}  \bigg)  = 15

\rm :\longmapsto\:log_{2}(x)\bigg(\dfrac{15 + 5 + 3}{15}  \bigg)  = 15

\rm :\longmapsto\:log_{2}(x)\bigg(\dfrac{23}{15}  \bigg)  = 15

\rm :\longmapsto\:log_{2}x = 15 \times \dfrac{15}{23}

\rm :\longmapsto\:log_{2}x = \dfrac{225}{23}

We know,

\boxed{\tt{  log_{a}(b) = c \: \rm\implies \: \: b =  {a}^{c} \: }}

So, using this, we get

\bf\implies \:x =  {\bigg(2\bigg) }^{\dfrac{225}{23} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{  log_{x}(x) = 1}}

\boxed{\tt{  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\boxed{\tt{  {a}^{ log_{a}(x) } = x}}

\boxed{\tt{  {a}^{ ylog_{a}(x) } =  {x}^{y} }}

\boxed{\tt{  log( {x}^{y} ) = y \: logx \: }}

Answered by OoAryanKingoO78
49

Answer:

Appropriate Question : -

Solve for x

\rm :\longmapsto\: log_{2}(x)  +  log_{8}(x)   + log_{32}(x)  = 15

 \red{\large\underline{\sf{Solution-}}}

Given Logarithmic equation is

\rm :\longmapsto\: log_{2}(x)  +  log_{8}(x)   + log_{32}(x)  = 15

can be rewritten as

\rm :\longmapsto\: log_{2}(x)  +  log_{ {2}^{3} }(x)   + log_{ {2}^{5} }(x)  = 15

We know,

\rm :\longmapsto\:\boxed{\tt{  log_{ {x}^{a} }( {y}^{b} ) =  \frac{b}{a} log_{x}(y) \: }}

So, using this identity, we get

\rm :\longmapsto\: log_{2}(x) + \dfrac{1}{3}log_{2}(x) + \dfrac{1}{5}log_{2}(x) = 15

\rm :\longmapsto\:log_{2}(x)\bigg(1 + \dfrac{1}{3}  + \dfrac{1}{5}  \bigg)  = 15

\rm :\longmapsto\:log_{2}(x)\bigg(\dfrac{15 + 5 + 3}{15}  \bigg)  = 15

\rm :\longmapsto\:log_{2}(x)\bigg(\dfrac{23}{15}  \bigg)  = 15

\rm :\longmapsto\:log_{2}x = 15 \times \dfrac{15}{23}

\rm :\longmapsto\:log_{2}x = \dfrac{225}{23}

We know,

\boxed{\tt{  log_{a}(b) = c \: \rm\implies \: \: b =  {a}^{c} \: }}

So, using this, we get

\bf\implies \:x =  {\bigg(2\bigg) }^{\dfrac{225}{23} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{  log_{x}(x) = 1}}

\boxed{\tt{  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\boxed{\tt{  {a}^{ log_{a}(x) } = x}}

\boxed{\tt{  {a}^{ ylog_{a}(x) } =  {x}^{y} }}

\boxed{\tt{  log( {x}^{y} ) = y \: logx \: }}

Similar questions