(1+m)x^2+2mcx+(c^2-a^2)=0 proved c^2=a^2(1+m^2)
Answers
Answered by
2
Given, (1+m)x^2 + 2mcx + c^2 - a^2 = 0
We know that b^2 - 4ac = 0
(2mc)^2 - 4(1+m^2)(c^2 - a^2) = 0
4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0
4m^2c^2 - 4c^2 + 4a^2 - 4m^2c^2 + 4m^2a^2 = 0
4c^2 = 4a^2 + 4a^2m^2
4c^2 = 4a^2(1+m^2)
c^2 = a^2(1+m^2).
LHS = RHS..
Hope this helps!
We know that b^2 - 4ac = 0
(2mc)^2 - 4(1+m^2)(c^2 - a^2) = 0
4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0
4m^2c^2 - 4c^2 + 4a^2 - 4m^2c^2 + 4m^2a^2 = 0
4c^2 = 4a^2 + 4a^2m^2
4c^2 = 4a^2(1+m^2)
c^2 = a^2(1+m^2).
LHS = RHS..
Hope this helps!
Similar questions