(1+m2)x2+2mcx+(c2-a2)=0....prove that c2=a2(1+m2)
Answers
Answered by
9
(1 + m2)x2 + 2 mcx + c2 - a2 = 0 has equal roots
⇒ b2 - 4ac = 0
⇒ (2 mc)2 - 4(1 + m2)(c2 - a2) = 0
⇒ 4m2c2 - 4(c2 - a2 + m2c2 - m2a2) = 0
⇒ 4m2c2 - 4c2 + 4a2 - 4m2c2 + 4m2a2 = 0
⇒ 4m2a2 - 4c2 + 4a2 = 0
⇒ m2a2 - c2 + a2 = 0
⇒ a2(1 + m2) - c2 = 0
⇒ c2 = a2(1 + m2)
Hence proved.
Similar questions