Math, asked by Krish99999, 1 year ago

(1!/n!)-(3/(n+1)!)-(n^2-4/(n+2)!)

Answers

Answered by SparklingBoy
6

Answer:

BASIC FORMULA USED :-)

 (n+1)! =( n+1)n!

Now using above formula,

Value of given expression can be calculated as:-

 \frac{1 !}{n!}  -  \frac{3}{(n + 1)!}   -  \frac{ {n}^{2}  - 4}{(n + 2)!}  \\  \\  =  \frac{1}{n!}  -  \frac{3}{(n + 1)n ! }  -  \frac{ {n}^{2}  - 4}{(n + 2)(n + 1)n!}  \\  \\  =  \frac{ (n + 1)(n + 2) - 3(n + 2) - (n {}^{2}  - 4)}{(n + 2)(n + 1)n ! }  \\  \\  = \frac{ n {}^{2} + 3 n + 2 - 3n - 6 - n {}^{2}  + 4}{(n + 2) ! }  \\  \\  =  \frac{0}{(n + 2) ! }  \\  \\  = 0

So,

The final value of given expression is zero .

Similar questions