Math, asked by Sharmashantanu224, 10 months ago

+1 or 9m +8.
Use Foclid's division lemma to show that the cube of any positive integer is of the form​

Answers

Answered by Anonymous
2

Let us consider a and b where a be any positive number and b is equal to 3.

According to Euclid’s Division Lemma

a = bq + r

where r is greater than or equal to zero and less than b (0 ≤ r < b)

a = 3q + r

so r is an integer rather than or equal to 0 and less than equal to 3.

Hence r can be either 0, 1 or 2.

Case 1: When r = 0, the equation becomes

a = 3q

Cubing both the sides

a3 = (3q)3

a3 = 27 q3

a3 = 9 (3q3)

a3 = 9m

where m = 3q3

Case 2: When r = 1, the equation becomes

a = 3q + 1

Cubing both the sides

a3 = (3q + 1)3

a3 = (3q)3 + 13 + 3 × 3q × 1(3q + 1)

a3 = 27q3 + 1 + 9q × (3q + 1)

a3 = 27q3 + 1 + 27q2 + 9q

a3 = 27q3 + 27q2 + 9q + 1

a3 = 9 ( 3q3 + 3q2 + q) + 1

a3 = 9m + 1

Where m = ( 3q3 + 3q2 + q)

Case 3: When r = 2, the equation becomes

a = 3q + 2

Cubing both the sides

a3 = (3q + 2)3

a3 = (3q)3 + 23 + 3 × 3q × 2 (3q + 1)

a3 = 27q3 + 8 + 54q2 + 36q

a3 = 27q3 + 54q2 + 36q + 8

a3 = 9 (3q3 + 6q2 + 4q) + 8

a3 = 9m + 8

Where m = (3q3 + 6q2 + 4q)therefore a can be any of the form 9m or 9m + 1 or, 9m + 8.

Answered by anandgeetha2302
0

Answer:

Let x be any positive integer. Then, it is of the form 3q or, 3q + 1 or, 3q + 2.

So, we have the following cases :

Case I : When x = 3q.

then, x3 = (3q)3 = 27q3 = 9 (3q3) = 9m, where m = 3q3.

Case II : When x = 3q + 1

then, x3 = (3q + 1)3

= 27q3 + 27q2 + 9q + 1

= 9 q (3q2 + 3q + 1) + 1

= 9m + 1, where m = q (3q2 + 3q + 1)

Case III. When x = 3q + 2

then, x3 = (3q + 2)3

= 27 q3 + 54q2 + 36q + 8

= 9q (3q2 + 6q + 4) + 8

= 9 m + 8, where m = q (3q2 + 6q + 4)

Hence, x3 is either of the form 9 m or 9 m + 1 or, 9 m + 8.

Step-by-step explanation:

Similar questions