Math, asked by rachanatg, 8 months ago

1. Prove that costeta/1-tanteta + sinteta/1-cotteta=sinteta+costeta​

Answers

Answered by MaIeficent
9

Step-by-step explanation:

\bf\underline{\underline{\red{To\:Prove:-}}}

  •  \rm \dfrac{cos \theta}{1 - tan \theta} +  \dfrac{sin \theta}{1 - cot \theta}   = sin \theta +  cot \theta

\bf\underline{\underline{\green{Proof:-}}}

 \rm LHS =  \dfrac{cos \theta}{1 - tan \theta} +  \dfrac{sin \theta}{1 - cot \theta}

 \rm =  \dfrac{cos \theta }{1 -  \dfrac{sin \theta}{cos \theta} } +  \dfrac{sin \theta}{1 -  \dfrac{cos \theta}{sin \theta} }

 \rm =  \dfrac{cos \theta }{ \dfrac{cos \theta - sin \theta}{cos \theta} } +  \dfrac{sin \theta}{ \dfrac{sin \theta - cos \theta}{sin \theta} }

 \rm =  \dfrac{cos \theta.cos \theta}{ cos \theta - sin \theta} +  \dfrac{sin \theta.sin \theta}{ sin \theta - cos \theta}

 \rm =  \dfrac{cos^{2}  \theta}{ cos \theta  - sin \theta} +  \dfrac{sin  ^{2} \theta}{ sin \theta  -  cos \theta}

 \rm =  \dfrac{cos^{2}  \theta}{ cos \theta  - sin \theta} +    \bigg[\dfrac{ - (sin  ^{2} \theta)}{  - (sin \theta  -  cos \theta)} \bigg]

 \rm =  \dfrac{cos^{2}  \theta}{ cos \theta  - sin \theta}  - \dfrac{ sin  ^{2} \theta}{ cos\theta  -  sin\theta}

 \rm =  \dfrac{cos^{2}  \theta -  {sin}^{2}  \theta}{ cos \theta  - sin \theta}

 \rm =  \dfrac{(cos \theta -  sin\theta)(cos\theta  +   sin\theta)}{ cos \theta  - sin \theta}

 \rm =  \dfrac{ \cancel{(cos \theta -  sin\theta)} \: (cos\theta  +   sin\theta)}{ c \cancel{cos \theta  - sin \theta}}

 \rm =  sin \theta + cos \theta = RHS

LHS = RHS

Hence Proved

\bf\underline{\underline{\purple{Formulas\: used:-}}}

  •  \rm tan \theta   =  \dfrac{sin \theta}{cos \theta}

  •  \rm cot \theta   =  \dfrac{cos \theta}{sin \theta}

  •  \rm  {a}^{2}  -  {b}^{2}   = (a + b)(a - b)
Similar questions