Math, asked by taran7128, 3 months ago

1. Prove that
sin2A tan A + cos2A.cot A +2 sin A. Cos A = tan A + cot A

Attachments:

Answers

Answered by Anonymous
3

Answer:

LHS = RHS

= sin²A × tan A + cos² A × cot A + 2 × sin A × cos A

= sin³ A / cos A + cos³ A / sin A +2 sin A cos A

= ( sin⁴ A + cos⁴ A + 2 sin² A cos A ) / sin A cos A

= ( sin² A + cos² A )² / sin A cos A

= 1²/sin A cos A

= 1/ sin A cos A

= ( sin² A + co²A / sin A cos A )

= sin² A / sin A cos A + co² A / sin A cos A

= sin A / cos A + cos A / sin A

= tan A + cot A = RHS

LHS = RHS

sin²A × tan A + cos²A + cot A + 2 × sin A × cos A = tan A = cot A

is your right answer

I hope answer is helpful to us

good night and sweet dreams

take care of yourself and your family

bye

Answered by 87654321k
6

Answer:

hope it helps‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎ ‎‎‎‎

Attachments:
Similar questions