1. Prove that
sin2A tan A + cos2A.cot A +2 sin A. Cos A = tan A + cot A
Answers
Answer:
LHS = RHS
= sin²A × tan A + cos² A × cot A + 2 × sin A × cos A
= sin³ A / cos A + cos³ A / sin A +2 sin A cos A
= ( sin⁴ A + cos⁴ A + 2 sin² A cos A ) / sin A cos A
= ( sin² A + cos² A )² / sin A cos A
= 1²/sin A cos A
= 1/ sin A cos A
= ( sin² A + co²A / sin A cos A )
= sin² A / sin A cos A + co² A / sin A cos A
= sin A / cos A + cos A / sin A
= tan A + cot A = RHS
LHS = RHS
sin²A × tan A + cos²A + cot A + 2 × sin A × cos A = tan A = cot A
is your right answer
I hope answer is helpful to us
good night and sweet dreams
take care of yourself and your family
bye
Answer:
hope it helps