Math, asked by tanmayrakeshkarpe, 1 month ago

(3) Find the derivative of tan x w. r. t. x.​

Answers

Answered by uttam13p
0

Answer:

First principle method,

f

(x)=lim

t→x

t−x

f(t)−f(x)

⇒f

(x)=lim

t→x

t−x

tan

t

−tan

x

=lim

t→x

t−x

1+tan

t

tan

x

tan

t

−tan

x

×(1+tan

t

tan

x

)

=lim

t→x

(

t−x

tan(

t

x

)

)×lim

t→x

(1+tan

t

tan

x

)

=(1+tan

t

tan

x

)lim

t→x

(

t

x

tan(

t

x

)

)

t

+

x

1

=(1+tan

2

x

)lim

(

t

x

)→0

(

t

x

tan(

t

x

)

)

t

+

x

1

=(sec

2

x

)(1)(

x

+

x

1

)

f

(x)=

2

x

1

sec

2

x

Answered by UniqueBabe
2

First principle method,

f ′

lim

t→x

t−x

f(t)−f(x)

f ′

lim

t→x

t−x

tan

t

−tan

x

= lim

t→x

t−x

1+tan

t

tan

x

tan

t

−tan

x

× (1+

tan

t

tan

x

)

=

lim

t→x

(

t−x

tan(

t

x

)

)

×

lim

t→x

(1+

tan

t

tan

x

)

=

(1+

tan

t

tan

x

)lim

t→x

(

t

x

tan(

t

x

)

)

t

+

x

1

=

(1+

tan 2

x

)lim

(

t

x

)→0

(

t

x

tan(

t

x

)

)

t

+

x

1

= (sec

2

x

)(1) (

x

+

x

1

)

f ′

2

x

1

sec 2

x

Similar questions