Math, asked by sg2211311, 7 months ago

1) Rationalize the denominator.
1/V7+V2​

Answers

Answered by MяƖиνιѕιвʟє
25

Given :-

  • 1/√7 + √2

To find

  • Rationalize its denominator

Solution :-

→ 1/√7 + √2

  • Rationalize its denominator by multiplying 7 - 2

→ 1/√7 + √2 × √7 - √2/√7 - √2

  • Apply identity
  • a² - b² = (a + b)(a - b)

→ √7 - √2/(√7)² - (√2)²

→ √7 - √2/7 - 2

→ √7 - √2/5

Hence,

  • The value after rationalising i.e √7 - √2/5

More to know :-

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

  • a³ - b³ = (a - b)(a² + ab + b²)

  • a³ + b³ = (a + b)(a² - ab + b²)

Answered by ADARSHBrainly
13

\Huge{\color{blue}{ \underline{\underline{\mathtt{ANSWER}}}}}

\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd

Given :-

  • 1/√7 + √2

To do :-

  • Rationalize the denominator

How to do:-

  • We will rationalize the denominator by using Algebraic Identity.

Algebraic Identity :-

  • (a)² - (b)² = (a + b) (a - b)

So, according to the question:-

 \\ \mathtt{\implies { \frac{1}{ \sqrt{7}  +  \sqrt{2} } }}

Multiplying √7 + √2 by both numbers

 \\   \mathtt{\implies {  {\frac{1}{ \sqrt{7} +  \sqrt{2}  } \times   {\frac{  \sqrt{7} -  \sqrt{2}  }{ \sqrt{7}  -   \sqrt{2}  } }}}}

By using identity :-

 \\  \mathtt{ \implies{ \frac{ \sqrt{7} -  \sqrt{2}  }{ ( \sqrt{7})^{2}  -   ( \sqrt{2})^{2}} }}

Therefore,

 \\  \mathtt{ \implies{ \frac{ \sqrt{7} -  \sqrt{2}  }{7 - 2} }}

 \\  \color{green}  \mathtt{ \implies{ \frac{ \sqrt{7} -  \sqrt{2}  }{5} }}

Hence, denominator is in rationalized form.

[tex]\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd

[tex]\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd\Huge{\color{red}{ \underline{\underline{ \\ \mathbb{ANSWER}}}}}}}ahhdjjd \\Huge{\color{red}{ \underline{\underline \\ {\mathbb{ANSWER}} \\ }}}}}ahhdjjd[/tex]

Similar questions