Math, asked by shikha997, 5 months ago

1+ rho^2 /2 = √( 1+rho^2 mu square)

Answers

Answered by bach0274
0

Answer:

V {\displaystyle V={\frac {n_{d}-1}{n_{F}-n_{C}}}}V = \frac{ n_d - 1 }{ n_F - n_C } optics (dispersion in optical materials)

Activity coefficient {\displaystyle \gamma }\gamma  {\displaystyle \gamma ={\frac {a}{x}}} \gamma= \frac {{a}}{{x}}  chemistry (Proportion of "active" molecules or atoms)

Albedo {\displaystyle \alpha }\alpha  {\displaystyle \alpha =(1-D){\bar {\alpha }}(\theta _{i})+D{\bar {\bar {\alpha }}}}\alpha= (1-D) \bar \alpha(\theta_i) + D \bar{ \bar \alpha} climatology, astronomy (reflectivity of surfaces or bodies)

Archimedes number Ar {\displaystyle \mathrm {Ar} ={\frac {gL^{3}\rho _{\ell }(\rho -\rho _{\ell })}{\mu ^{2}}}} \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2} fluid mechanics (motion of fluids due to density differences)

Arrhenius number {\displaystyle \alpha }\alpha  {\displaystyle \alpha ={\frac {E_{a}}{RT}}}\alpha = \frac{E_a}{RT}  chemistry (ratio of activation energy to thermal energy)[1]

Atomic weight M  chemistry (mass of atom over one atomic mass unit, u, where carbon-12 is exactly 12 u)

Atwood number A {\displaystyle \mathrm {A} ={\frac {\rho _{1}-\rho _{2}}{\rho _{1}+\rho _{2}}}}\mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2}  fluid mechanics (onset of instabilities in fluid mixtures due to density differences)

Bagnold number Ba {\displaystyle \mathrm {Ba} ={\frac {\rho d^{2}\lambda ^{1/2}\gamma }{\mu }}}\mathrm{Ba} = \frac{\rho d^2 \lambda^{1/2} \gamma}{\mu} fluid mechanics, geology (ratio of grain collision stresses to viscous fluid stresses in flow of a granular material such as grain and sand)[2]

Basic reproduction number {\displaystyle R_{0}}R_{0} number of infections caused on average by an infectious individual over entire infectious period epidemiology

Bejan number

(fluid mechanics) Be {\displaystyle \mathrm {Be} ={\frac {\Delta PL^{2}}{\mu \alpha }}}\mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha} fluid mechanics (dimensionless pressure drop along a channel)[3]

Bejan number

(thermodynamics) Be {\displaystyle \mathrm {Be} ={\frac {{\dot {S}}'_{\mathrm {gen} ,\,\Delta T}}{{\dot {S}}'_{\mathrm {gen} ,\,\Delta T}+{\dot {S}}'_{\mathrm {gen} ,\,\Delta p}}}}\mathrm{Be} = \frac{\dot S'_{\mathrm{gen},\, \Delta T}}{\dot S'_{\mathrm{gen},\, \Delta T}+ \dot S'_{\mathrm{gen},\, \Delta p}} thermodynamics (ratio of heat transfer irreversibility to total irreversibility due to heat transfer and fluid friction)[4]

Bingham number Bm {\displaystyle \mathrm {Bm} ={\frac {\tau _{y}L}{\mu V}}}\mathrm{Bm} = \frac{ \tau_y L }{ \mu V } fluid mechanics, rheology (ratio of yield stress to viscous stress)[1]

Biot number Bi {\displaystyle \mathrm {Bi} ={\frac {hL_{C}}{k_{b}}}}\mathrm{Bi} = \frac{h L_C}{k_b} heat transfer (surface vs. volume conductivity of solids)

Blake number Bl or B {\displaystyle \mathrm {B} ={\frac {u\rho }{\mu (1-\epsilon )D}}}\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D} geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media)

Blondeau number {\displaystyle B_{\kappa }}{\displaystyle B_{\kappa }} {\displaystyle \mathrm {B_{\kappa }} ={\frac {t_{g}v_{f}}{l_{mf}}}}{\displaystyle \mathrm {B_{\kappa }} ={\frac {t_{g}v_{f}}{l_{mf}}}} sport science, team sports[5]

Bodenstein number Bo or Bd {\displaystyle \mathrm {Bo} =vL/{\mathcal {D}}=\mathrm {Re} \,\mathrm {Sc} }\mathrm{Bo} = vL/\mathcal{D} = \mathrm{Re}\, \mathrm{Sc}  chemistry (residence-time distribution; similar to the axial mass transfer Peclet number)[6]

Bond number Bo {\displaystyle \mathrm {Bo} ={\frac {\rho aL^{2}}{\gamma }}}\mathrm{Bo} = \frac{\rho a L^2}{\gamma} geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number) [7]

Brinkman number Br {\displaystyle \mathrm {Br} ={\frac {\mu U^{2}}{\kappa (T_{w}-T_{0})}}} \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)} heat transfer, fluid mechanics (conduction from a wall to a viscous fluid)

Brownell–Katz number NBK {\displaystyle \mathrm {N} _{\mathrm {BK} }={\frac {u\mu }{k_{\mathrm {rw} }\sigma }}}\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma}  fluid mechanics (combination of capillary n

Answered by uditnagar785
0

Answer:

Step-by-step explanation:

V {\displaystyle V={\frac {n_{d}-1}{n_{F}-n_{C}}}}V = \frac{ n_d - 1 }{ n_F - n_C } optics (dispersion in optical materials)

Activity coefficient {\displaystyle \gamma }\gamma  {\displaystyle \gamma ={\frac {a}{x}}} \gamma= \frac {{a}}{{x}}  chemistry (Proportion of "active" molecules or atoms)

Albedo {\displaystyle \alpha }\alpha  {\displaystyle \alpha =(1-D){\bar {\alpha }}(\theta _{i})+D{\bar {\bar {\alpha }}}}\alpha= (1-D) \bar \alpha(\theta_i) + D \bar{ \bar \alpha} climatology, astronomy (reflectivity of surfaces or bodies)

Archimedes number Ar {\displaystyle \mathrm {Ar} ={\frac {gL^{3}\rho _{\ell }(\rho -\rho _{\ell })}{\mu ^{2}}}} \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2} fluid mechanics (motion of fluids due to density differences)

Arrhenius number {\displaystyle \alpha }\alpha  {\displaystyle \alpha ={\frac {E_{a}}{RT}}}\alpha = \frac{E_a}{RT}  chemistry (ratio of activation energy to thermal energy)[1]

Atomic weight M  chemistry (mass of atom over one atomic mass unit, u, where carbon-12 is exactly 12 u)

Atwood number A {\displaystyle \mathrm {A} ={\frac {\rho _{1}-\rho _{2}}{\rho _{1}+\rho _{2}}}}\mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2}  fluid mechanics (onset of instabilities in fluid mixtures due to density differences)

Bagnold number Ba {\displaystyle \mathrm {Ba} ={\frac {\rho d^{2}\lambda ^{1/2}\gamma }{\mu }}}\mathrm{Ba} = \frac{\rho d^2 \lambda^{1/2} \gamma}{\mu} fluid mechanics, geology (ratio of grain collision stresses to viscous fluid stresses in flow of a granular material such as grain and sand)[2]

Basic reproduction number {\displaystyle R_{0}}R_{0} number of infections caused on average by an infectious individual over entire infectious period epidemiology

Bejan number

(fluid mechanics) Be {\displaystyle \mathrm {Be} ={\frac {\Delta PL^{2}}{\mu \alpha }}}\mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha} fluid mechanics (dimensionless pressure drop along a channel)[3]

Bejan number

(thermodynamics) Be {\displaystyle \mathrm {Be} ={\frac {{\dot {S}}'_{\mathrm {gen} ,\,\Delta T}}{{\dot {S}}'_{\mathrm {gen} ,\,\Delta T}+{\dot {S}}'_{\mathrm {gen} ,\,\Delta p}}}}\mathrm{Be} = \frac{\dot S'_{\mathrm{gen},\, \Delta T}}{\dot S'_{\mathrm{gen},\, \Delta T}+ \dot S'_{\mathrm{gen},\, \Delta p}} thermodynamics (ratio of heat transfer irreversibility to total irreversibility due to heat transfer and fluid friction)[4]

Bingham number Bm {\displaystyle \mathrm {Bm} ={\frac {\tau _{y}L}{\mu V}}}\mathrm{Bm} = \frac{ \tau_y L }{ \mu V } fluid mechanics, rheology (ratio of yield stress to viscous stress)[1]

Biot number Bi {\displaystyle \mathrm {Bi} ={\frac {hL_{C}}{k_{b}}}}\mathrm{Bi} = \frac{h L_C}{k_b} heat transfer (surface vs. volume conductivity of solids)

Blake number Bl or B {\displaystyle \mathrm {B} ={\frac {u\rho }{\mu (1-\epsilon )D}}}\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D} geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media)

Blondeau number {\displaystyle B_{\kappa }}{\displaystyle B_{\kappa }} {\displaystyle \mathrm {B_{\kappa }} ={\frac {t_{g}v_{f}}{l_{mf}}}}{\displaystyle \mathrm {B_{\kappa }} ={\frac {t_{g}v_{f}}{l_{mf}}}} sport science, team sports[5]

Bodenstein number Bo or Bd {\displaystyle \mathrm {Bo} =vL/{\mathcal {D}}=\mathrm {Re} \,\mathrm {Sc} }\mathrm{Bo} = vL/\mathcal{D} = \mathrm{Re}\, \mathrm{Sc}  chemistry (residence-time distribution; similar to the axial mass transfer Peclet number)[6]

Bond number Bo {\displaystyle \mathrm {Bo} ={\frac {\rho aL^{2}}{\gamma }}}\mathrm{Bo} = \frac{\rho a L^2}{\gamma} geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number) [7]

Brinkman number Br {\displaystyle \mathrm {Br} ={\frac {\mu U^{2}}{\kappa (T_{w}-T_{0})}}} \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)} heat transfer, fluid mechanics (conduction from a wall to a viscous fluid)

Brownell–Katz number NBK {\displaystyle \mathrm {N} _{\mathrm {BK} }={\frac {u\mu }{k_{\mathrm {rw} }\sigma }}}\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma}  fluid mechanics (combination of capillary n

Similar questions