Math, asked by sarthoo, 2 months ago

1+sec/sec=sin^2/1-cos​

Answers

Answered by Anonymous
82

Answer:

{ \underline{ \large{ \pmb{ \sf{Question : }}}}}

  • { \sf{Prove \:  that :  \frac{1 +  sec}{sec}  =  \frac{ {sin}^{2} }{1 - cos} }} \\

{ \underline{ \large{ \pmb{ \sf{Solution:}}}}}

 : { \implies{ \sf{ \frac{1 + secA}{secA} }}} \\  \\  : { \implies{ \sf{ \frac{1 + \frac{1}{cosA}  }{ \frac{1}{cosA} } }}} \\  \\  : { \implies{ \sf{ 1 + \frac{1 }{cosA}  \times  \frac{cosA}{1} }}} \\  \\  : { \implies{ \sf{ \frac{cosA + 1}{cosA}  \times cosA}}} \\  \\  : { \implies{ \sf{ \frac{cosA + 1}{{ \cancel{cosA}}}  \times { \cancel{cosA}}}}} \\  \\  : { \implies{ \sf{cosA + 1}}} \\  \\ { \pmb{ \sf{Multiply \:  And \:  Divide  \: With  \: (1- CosA)}}} \\  \\  : { \implies{ \sf{cosA + 1 \times  \frac{1 - cosA}{1 - cosA} }}} \\  \\   : { \implies{ \sf{ \frac{1 -  {cos}^{2}A }{1 - cosA}  }}} \\  \\   : { \implies{ \sf{   \frac{ {sin}^{2}A }{1 - cosA} }}} \\  \\ \therefore { \pmb{ \sf{Hence  \: Proved}}}

Used Formulae:

  • (a² - b²) = (a + b) (a - b)

Used Identities:

  • Sin² + cos² = 1
  • Sin² = 1 - cos²
Answered by AbhinavRocks10
21

\bullet\large{\sf{\underline{\underline\red{Solution!!}}}}

  • L.H.S = R.H.S

Step-by-step explanation:

According to this question

Given that,

\tt\frac{1 + sec a}{sec a}

\tt\frac{sin 2a}{1 - cos a}

Let, L.H.S

\tt\frac{1 + sec a}{sec a}

\tt\frac{1 + (\frac{1}{cos a})}{\frac{1}{cos a}}]

\large\tt\frac{\frac{cos a + 1}{cos a}}{\frac{1}{cosa}}

cos a + 1cosa+1

Multiple and divide with (1 - cos a)

\tt(1 + cos a)\times \frac{1 - cos a}{1 - cos a}

\tt\frac{1 - cos^2 a}{1 - cos aa}

\tt\frac{sin 2a}{1 - cos a}

R.H.S

Similar questions