1) secΘ + tanΘ = 3/2, Find sinΘ
2) If 5sinΘ = 4, Find 5sinΘ - 3cosΘ/sinΘ + 2cosΘ
Answers
Question 1) :- secΘ + tanΘ = 3/2, Find sinΘ ?
Solution :-
we know that,
- sec²A - tan²A = 1 .
So,
→ sec²Θ - tanΘ² = 1
Now, we also know that,
- (a² - b²) = (a + b)(a - b) .
then,
→ (secΘ + tanΘ)(secΘ - tanΘ) = 1
→ (3/2)(secΘ - tanΘ) = 1
→ (secΘ - tanΘ) = (2/3) ------ Eqn.(1)
adding given , (secΘ + tanΘ) = 3/2 and Eqn.(1) , we get,
→ (secΘ + tanΘ) + (secΘ - tanΘ) = (3/2) + (2/3)
→ 2secΘ = (9 + 4)/6 = 13/6
→ secΘ = 13/12
→ secΘ = Hypotenuse/Base
comparing,
- Hypotenuse = 13
- Base = 12 .
Therefore,
→ Perpendicular = √[(Hypotenuse)² - (Base)²] { using pythagoras .}
→ Perpendicular = √[(13)² - (12)²] = √[169 - 144] = √(25) = 5 .
Hence,
→ sinΘ = Perpendicular/hypotenuse
→ sinΘ = 5/13 (Ans.)
_______________
Question 2) :- If 5sinΘ = 4, Find 5sinΘ - 3cosΘ/sinΘ + 2cosΘ ?
Solution :-
→ 5sinΘ = 4
→ sinΘ = 4/5 = Perpendicular / Hypotenuse .
we get,
- Perpendicular = 4.
- Hypotenuse = 5.
then,
→ Base = √[(Hypotenuse)² - (Perpendicular)²] { using pythagoras .}
→ Base = √[(5)² - (4)²] = √[25 - 16] = √(9) = 3 .
then,
- cosΘ = Base / Hypotenuse = 3/5 .
Putting all values now we get,
→ (5sinΘ - 3cosΘ)/(sinΘ + 2cosΘ)
→ (5*4/5 - 3*3/5) / (4/5 + 2*3/5)
→ (20/5 - 9/5) / (4/5 + 6/5)
→ (11/5) / (10/5)
→ (11/5) * (5/10)
→ (11/10) (Ans.)
_______________________
Answer:
1.sinθ and tanθ are negative, so θ lies in fourth quadrant.
2.Refers to above attachment.....