Math, asked by parthdhote545, 11 months ago

1/secA-tanA=secA+tanA​

Answers

Answered by Itzraisingstar
0

Answer:

Hey mate here is your answer.//

Step-by-step explanation:

1/secA+tanA

Multiply by secA - tanA on both denominator and nominator

(secA - tanA) ÷ (sec²A - tan²A)

We know, sec²A - tan²A = 1

Then,

(secA - tanA) ÷ 1

SecA - tanA.

Hope it helps you.//✔✔✔

Please do mark me as Brainliest.//

Answered by MrBhukkad
3

\huge{\mathcal{ \overbrace{ \underbrace{ \pink{ \fbox{ \green{ \blue{S} \pink{o} \red{l} \green{u} \purple{t} \blue{i} \green{o} \red{n}}}}}}}}

 \underline { \underline{\blue {\tt{L.H.S.}}}} \\  \:  \:  \:  \:  \bf{ \frac{1}{secA -  tanA } } \\  \bf{ =  \frac{ {sec}^{2} A -  {tan}^{2}A }{secA - tanA}} \\  \\  [\red{ \tt{∵ {sec}^{2} A -  {tan}^{2}A = 1  }}] \\ \\ =    \bf{ \frac{(secA + tanA)(secA - tanA)}{(secA - tanA)} } \\  \\ [  \red {\tt{From \:  \:  \:  \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}}] \\  \\  =  \bf{secA + tanA}

∵ L.H.S. = R.H.S.

Hence proved

Similar questions